来自在线整数百科全书的问候语!http://oeis.org/ Search: id:a160722 Showing 1-1 of 1 %I A160722 %S A160722 0,1,5,9,19,23,33,43,65,69,79,89,111,121,143,165,211,215,225,235,257, %T A160722 267,289,311,357,367,389,411,457,479,525,571,665,669,679,689,711,721, %U A160722 743,765,811,821,843,865,911,933,979,1025,1119,1129,1151,1173,1219,1241 %N A160722 Number of "ON" cells at n-th stage in a certain 2-dimensional cellular automaton based on Sierpinski triangles (see Comments for precise definition). %C A160722 This cellular automata is formed by the concatenation of three Sierpinski triangles, starting from a central vertex. 相邻多边形融合。ON细胞是三角形,但我们只在融合后计数。该序列给出了第n轮的多边形的数目.%%C A160722,如果我们从四个Sielpsik三角形开始,我们得到A160720.0%H A160722 David Applegate,Omar E. Pol和N.J.A.斯隆,基于细胞自动机的牙签序列及其他序列国会议员,第206卷(2010),157—191页。[定理6中有一个类型:(13)应该读取u(n)=4.3 ^(Wt(n-1)-1),对于n>=2。OEIS中的Toothpick目录和元胞自动机序列%H A160722 Omar E. Pol,初始条件说明%F A160722A(n)=3×A000 6046(n)- 2×N--Max AlkeEyve],1月21日2010πE A160722,我们在第0轮开始,没有多边形,A(0)=0。在融合之后,我们有一个凹形五角大厦,所以A(1)=1。%A160722在第2回合,我们在三个Sielpsikin三角形中打开两个三角形。融合后,我们有凹五角大厦和四个三角形。=1+4=5。y=A160722 A160723给出第一个差异。ε%A160722,A139250,A160720.0%K A160722,NN 0%O A160722 0,3‰A160722,OMAR E.POLLY,5月25日2009,1月03,2010 A%,A160722由最大的AeleSeEvEy延长,1月21日2010‰的内容在OEIS最终用户许可协议下可用:HTTP:/OEIS.Org/许可证A(2)