来自在线整数百科全书的问候语!http://oeis.org/ Search: id:a148803 Showing 1-1 of 1 %I A148803 %S A148803 1,1,3,8,26,83,281,971,3417,12264,44438,162904,602266,2241764,8400548, %T A148803 31634918,119702435,454780012,1733848968,6631814922,25436402695, %U A148803 97810174385,376967520192,1455826275320,5632909116247,21831857984083,84746834213967,329439820828496,1282316672529298,4997344941893617πn A148803在n^ 3(第一个八分位的Z^ 3)开始的行进数在(0,0,0)开始,并且由从{(-1, 0, 0),(0,-1, 1),(1, 0, 1),(1, 1,-1)} %A148803 A. Bostan和M. Kauers,2008所取的n步组成。受限网格行走的自动分类ARXIV 811.2899. %t A148803 aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, -1 + j, 1 + k, -1 + n] + aux[-1 + i, j, -1 + k, -1 + n] + aux[i, 1 + j, -1 + k, -1 + n] + aux[1 + i, j, k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n},{k,0,n},{n,0, 10 } %k a148803,n,步行%o o A148803 0,3‰A148803MaunelKaulss],11月18日2008‰的内容在OEIS最终用户许可协议下可用:HTTP:/OEIS.Org/许可证