来自在线整数百科全书的问候语!http://oeis.org/ Search: id:a116607 Showing 1-1 of 1 %I A116607 %S A116607 1,3,4,7,6,12,8,15,4,18,12,28,14,24,24,31,18,12,20,42,32,36,24,60,31, %T A116607 42,4,56,30,72,32,63,48,54,48,28,38,60,56,90,42,96,44,84,24,72,48,124, %U A116607 57,93,72,98,54,12,72,120,80,90,60,168,62,96,32,127,84,144,68,126,n的除数的96πn a116607和9不能被整除.%%D A116607 B. C. Berndt,RAMANUJYN的笔记本第三部分,Springer Verlag,见第475页条目7(I).%%H A116607 Seiichi Manyama,n,a(n)n=1…10000的表%H A116607 J. M. Borwein和P. B. Borwein,雅可比恒等式的三次对应与AGM,反式。埃默。数学SOC,323(1991),2,691-701。MR1010408(91E:33012).q%f f a116607a(n)的幂(η(q^ 3)^ 10 /(η(q)η(q^ 9))^ 3~1)/3的扩展的εf a116607乘以a(3 ^ e)=4,如果e>0;(p-1),否则,πf A116607 G.F.:SuMux{K*X^ k/(1 -x^ k)-9*k*x^(9×k)/(1 -x^(9×k)).%f a116607 L.G.F:log(乘积{{k>=1 }(1 -x^(9*k))/(9 -x^ k))= SUMU{{N>=Y} A(n)*X^ n/N--ILYA Gutkovskyyy,A(p^ e)=(p^(e+1)- 1)*Q^ Surviv+y^ q+y*qq+ +…%%a116607,[{c= 9[n],[c],{i,y}] ] [ Harvey P. Dale,2010年12月19日] [%%t a116607下拉] [系数[Sk[k*x^ k/(α-x^ k)-**k*x^(y*k)/(α-x^(y*k)),{k,y}],{x,y}],x],3月14日2018‰E A116607 q+ 3*q^ 2+4*q^ 3+7×q^ 4+6×q^ 5+12*q^ 6+81] (* _Indranil Ghosh_, Mar 25 2017 *) %o A116607 (PARI) {a(n) = if( n<1, 0, sigma(n) - if( n%9==0, 9 * sigma(n/9)))} %o A116607 (PARI) {a(n) = polcoeff( sum( k=1, n, k * (x^k /(1 - x^k) - 9 * x^(9*k) /(1 - x^(9*k))), x * O(x^n)), n)} %o A116607 (PARI) q='q+O('q^66); Vec( (eta(q^3)^10/(eta(q)*eta(q^9))^3 - 1) /3 ) \\ _Joerg Arndt_, Mar 25 2017 %o 如果i i 9>0)n在范围(1, 101)]中,α-y1166026(n)=3>a(n),如果n>0。%,A116607,A04697,A046913,A113957,A116073A264326,A28 434 1。A116607(Python)%AO A116607从症状输入因子%AO A116607打印[求和](i为I在因式(n)中2月19日在OEIS终端用户许可协议下可用的2006μl内容:HTTP:/OEIS.Org/许可证