来自在线整数百科全书的问候语!http://oeis.org/ Search: id:a085604 Showing 1-1 of 1 %I A085604 %S A085604 0,1,0,1,1,0,3,1,0,0,3,1,1,0,0,4,2,1,0,0,0,4,2,1,1,0,0,0,7,2,1,1,0,0, %T A085604 0,0,7,4,1,1,0,0,0,0,0,8,4,2,1,0,0,0,0,0,0,8,4,2,1,1,0,0,0,0,0,0,10,5, %U A085604 2,1,1,0,0,0,0,0,0,0,10,5,2,1,1,1,0,0,0,0,0,0,0,11,5,2,2,1,1,0,0,0 %N A085604 T(n,k) = highest power of prime(k)分割N!1)=A011371n(n);n(n,2)=a05861(n)为n>1;ε%a08604t(n,k)=素数(k)的出现数为n=(n)(重复);β%c a085 604和{ t(n,k):1 <=k<=n}=a022559(n);β%cA085 604t(n,a000 0720(n))=1;t(n,k)=0,a000 0720(n)按行读取。%%A08604T(n),1和K=1…A000 0720(n)。- 01岁,2013岁,Reinhard Zumkeller,行n=1…125的三角形,扁平化%e A085604 0; %e A085604 1,0; %e A085604 1,1,0; %e A085604 3,1,0,0; %e A085604 3,1,1,0,0; %e A085604 4,2,1,0,0,0; %e A085604 4,2,1,1,0,0,0; %e A085604 7,2,1,1,0,0,0,0; %e A085604 7,4,1,1,0,0,0,0,0; %e A085604 8,4,2,1,0,0,0,0,0,0; %o A085604 (Haskell) %o A085604 a085604 n k = a085604_tabl !! (N-2)!(k-1) %o A085604 a085604_row 1 = [0] %o A085604 a085604_row n = a115627_row n ++ (take $ a062298 $ fromIntegral n) [0,0..] %o A085604 a085604_tabl = map a085604_row [1..] %o A085604 -- _Reinhard Zumkeller_, Nov 01 2013 %Y A085604 Cf. A141809, A115627, A000142. %K A085604 nonn,tabl %O A085604 1,7 %A A085604 _Reinhard Zumkeller_, 在OEIS最终用户许可协议下,JUL 07 2003π的内容是:HTTP:/OEIS.Org/许可证