来自在线整数百科全书的问候语!http://oeis.org/ Search: id:a018910 Showing 1-1 of 1 %I A018910 %S A018910 4,5,7,10,15,23,36,57,91,146,235,379,612,989,1599,2586,4183,6767, %T A018910 10948,17713,28659,46370,75027,121395,196420,317813,514231,832042, %U A018910 1346271,2178311,3524580,5702889,9227467,14930354,24157819,39088171,63245988,102334157,165580143 %N A018910 Pisot sequence L(4,5). %H A018910 Colin Barker,n,a(n)n=0…1000的表%H A018910 D. W. Boyd,一类广义Pisot序列的线性递推关系数论的进展(金斯顿ON,1991)33~340,牛津SCI。牛津大学出版社,纽约,1993常系数线性递归的索引项,签名(2, 0,- 1).%%H A018910Pisot序列的索引条目%F A018910A(n)=Fib(n+ 3)+2=a02074(n-2)=a1577(n+1);a(n)=2a(n-1)-a(n-3).f %A018910G.F.:-(-4 + 3×x+3×x^ 2)/(x-1)/(x^ 2 +x-1)=-2 /(x-1)+(-X-2)/(x^ 2 +x-1)。- _R. J. Mathar_, Nov 23 2007 %F A018910 a(n)=2+((5+2r5)/5)((1+r5)/2)^n+((5-2r5)/5)((1-r5)/2)^n, where r5 = sqrt(5). %F A018910 - _Paolo P. Lava_, Jun 10 2008 %t A018910 LinearRecurrence[{2, 0, -1}, {4, 5, 7}, 40] (* _Jean-François Alcover_, Dec 12 2016 *) %o A018910 (PARI) pisotL(nmax, a1, a2) = { %o A018910 a=vector(nmax); a[1]=a1; a[2]=a2; %o A018910 for(n=3, nmax, a[n] = ceil(a[n-1]^2/a[n-2])); %o A018910 a %o A018910 } %o A018910 pisotL(50, 4, 5) \\ _Colin Barker_, Aug 07 2016 %Y A018910 See A008776 for definitions of Pisot sequences. %K A018910 nonn,easy %O A018910 0,1 %A A018910 _R. K. Guy_ # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE