来自在线整数百科全书的问候语!http://oeis.org/ Search: id:a008621 Showing 1-1 of 1 %I A008621 %S A008621 1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,6,7,7,7,7,8,8,8,8,9,9, %T A008621 9,9,10,10,10,10,11,11,11,11,12,12,12,12,13,13,13,13,14,14,14,14,15, %U A008621 15,15,15,16,16,16,16,17,17,17,17,18,18,18,18,19,19,19,19,20,20,20,20,21,21 %N A008621 Expansion of 1/((1-x)*(1-x^4)). %C A008621 Arises from Gleason's theorem on self-dual codes: 1/((1-x^2)*(1-x^8)) is the Molien series for the real 2-dimensional Clifford group (a dihedral group of order 16) of genus 1. %C A008621 Count of odd numbers between consecutive quarter-squares, A002620. OpFunn猜想每个计数至少有一个素数。- 9月10日,丹尼尔2011 K.A00 8621分为1和4部分。- JoeGr.Arnttz,Jun 01 2013 2013 %D A000 8621 D. J. Benson,有限群的多项式不变量,剑桥,1993,P 100。F. J. MacWilliams,N.J.A.斯隆,纠错码理论,1977,第19章,问题3,P 602。n,a(n)n=0…1000的表%H A000 8621 iRIA算法项目组合结构百科全书211%HA88621G Nebe,E. M. Rains和N.J.A.斯隆,自对偶码与不变量理论,Springer,柏林,2006。%AH A88621维基百科,奥普曼猜想%H A000 8621莫里恩系列索引条目%H A000 8621常系数线性递归的索引项楼层(n/4)+1 .f%a88621a(n)=a010766(n=4, 4).% f f a00 8621 a(n)=和{k=0…n,(k+1)CoS(π(N-K)/2 }+1/4)[COS(n*PI/2)+1 +(-1)^ n] } / 2 -α-Paulo p Lavaz,OCT 09α%f A000 8621也,A(n)=上限((n+x)/y),n>=α。签名(1,0,0,1,- 1)。5月22日,2007μF F A00 8621 A(n)=SUMY{{I=0…N} A121262(i)=n/4+5/8+(-1)^ n/8 +A057077(n)/4。- 3月14日R.J.MathARGI,2011πF AA88621 A(x,y):=地板(x/2)+地板(y/2)-x,其中x=a00 2620(n)和y= a00 2620(n+1),n> 2。- 9月10日丹尼尔2011 k%,A00 8621 A(0)=1,A(1)=1,A(2)=1,A(3)=1,A(4)=2,A(n)=A(N-1)+A(N-4)-A(N-5)。- _Harvey P. Dale_, Feb 19 2012 %t A008621 Table[Floor[n/4]+1, {n, 0, 80}] (* _Stefan Steinerberger_, Apr 03 2006 *) %t A008621 CoefficientList[Series[1/((1-x)(1-x^4)),{x,0,80}],x] (* _Harvey P. Dale_, Feb 19 2012 *) %t A008621 Flatten[ Table[ PadRight[{},4,n],{n,19}]] (* _Harvey P. Dale_, Feb 19 2012 *) %o A008621 (PARI) a(n)=n\4+1 \\ _Charles R Greathouse IV_, Feb 06 2017 %Y A008621 Cf. A008718, A024186, A110160, A110868, A110869, A110876, A110880, A002265, A008620. %K A008621 nonn,easy,nice %O A008621 0,5 %A A008621 _N. J. A. Sloane_ %E A008621 More terms from _Stefan Steinerberger_, Apr 03 2006 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE