来自在线整数百科全书的问候语!http://oeis.org/ Search: id:a006301 Showing 1-1 of 1 %I A006301 M5120 %S A006301 0,0,0,0,21,966,27954,650076,13271982,248371380,4366441128, %T A006301 73231116024,1183803697278,18579191525700,284601154513452, %U A006301 4272100949982600,63034617139799916,916440476048146056,13154166812674577412,186700695099591735024,2623742783421329300190,36548087103760045010148,505099724454854883618924 %N A006301 Number of rooted genus-2 maps with n edges. %D A006301 E. R. Canfield, Calculating the number of rooted maps on a surface, Congr. 数学家,76(1990),21-34年.0%D A000 6301 N.J.A.斯隆和Simon Plouffe,整数序列百科全书,学术出版社,1995(包括这一序列).21%A000 6301 T.R.S.沃尔什,组合枚举非平面地图。多伦多大学博士学位论文,1971。n,a(n)n=0…30的表(来自Mednykh和NeDela)%AH 66301 E. A. Bender和E. R. Canfield,可定向曲面上有根映射的个数J. Combin。理论,B 53(1991),第29至第29页。第%H HA66301 Sean R. Carrell,Guillaume Chapuy,可定向曲面上计数图的简单递推公式,ARXIV:1402.6300(数学,Co),(19-MARCH-2014)。%H HA6630T.R.S.沃尔什和A. B. Lehman,根根图的亏格计数J·梳子。Thy B13 (1972), 122-141 and 192-218. %t A006301 T[0, 0] = 1; T[n_, g_] /; g < 0 || g > n/2 = 0; T[n_, g_] := T[n, g] = ((4 n - 2)/3 T[n - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 T[n - 2, g - 1] + 1/2 Sum[(2 k - 1) (2 (n - k) - 1) T[k - 1, i] T[n - k - 1, g - i], {k, 1, n - 1}, {i, 0, g}])/((n + 1)/6); %t A006301 a[n_] := T[n, 2]; %t A006301 Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Jul 20 2018 *) %o A006301 (PARI) %o A006301 A005159_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-12*x))/(6*x); %o A006301 A006301_ser(N) = { %o A006301 my(y=A005159_ser(N+1)); %o A006301 -y*(y-1)^4*(4*y^4 - 16*y^3 + 153*y^2 - 148*y + 196)/(9*(y-2)^7*(y+2)^4); %o A006301 }; %o A006301 concat([0,0,0,0], Vec(A006301_ser(19))) \\ _Gheorghe Coserea_, Jun 02 2017 %Y A006301 Rooted maps with n edges of genus g for 0 <= g <= 10: A000168, A006300, this sequence, A104742, A215402, A238355, A238356, A238357, A238358, A238359, A238360. %K A006301 nonn %O A006301 0,AO66301,A.J.A.SLANENEY和A.Simon PouffeE.E.A000 6301的5个百分点,来自于Joeg Arnttz,2月26日2014‰的内容在OEIS最终用户许可协议下可用:HTTP:/OEIS.Org/许可证