来自在线整数百科全书的问候语!http://oeis.org/ Search: id:a006298 Showing 1-1 of 1 %I A006298 M5117 %S A006298 21,483,6468,66066,570570,4390386,31039008,205633428,1293938646, %T A006298 7808250450,45510945480,257611421340,1422156202740,7683009544980, %U A006298 40729207226400,212347275857640,1090848505817070,5530195966465170,27704671055301240,137308238124957900,673903972248687180,3278143051447003740,15816495077491530240,75740811006275677080,360195962116311020700,1702004224469594857812,7994567449203067400976,37343992994700814841496,173539732151844963086952,802554981295852197252840,3694707104076119563303872,16936911943685345325329616 %N A006298 Number of genus 2 rooted maps with 1 face with n vertices. %D A006298 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %D A006298 T. R. S. Walsh, Combinatorial Enumeration of Non-Planar Maps. 多伦多大学博士学位论文,1971,G. C. Greubel,n,a(n)n=4…1000的表%H A00 629 8 Robert Cori,G Hetyei,一个固定亏格的计数,ARXIV预印记ARXIV:1710.09992 [数学,Co ],2017。%AH A6629 8 T.R.S沃尔什和A. B. Lehman,根根图的亏格计数J·梳子。你的B13(1972),122-141和192-218.%%H AA6629 8梁朝和冯耀艳,关于一类递归矩阵的总正性的注记《整数序列》,第19卷(2016),第16.6页,第F %A00 629 8A(n+1)=((5×n+3)*(4n*+2)*A(n))/((5×n-2)(n-3)).% f f a00 629 8g.f: 21×x^ 4 *(1 +x)/qRT((1-4*x)^ 11)。A(n)=21 *(A020922(n-4)+A020922(n-3))。(n)*(+ 16×A(n+1)+62 * A(n+2)+6 *a(n+3))+a(n+1)*(-38 *(n+1)-y* a(n+-)+* *(n+-))+a(n+*)*(-α*(n+-)+a(n+-))。- 3月13日拉尔夫斯蒂芬南(G.F.由Joeg Artttz修正,APR 07,2013)%%F A00 629 8=0(A=2004)- _Vaclav Kotesovec_, Mar 30 2016 %e A006298 G.f. = 21*x^4 + 483*x^5 + 6468*x^6 + 66066*x^7 + 570570*x^8 + 4390386*x^9 + ... %t A006298 CoefficientList[Series[21*x^4*(1 + x)/Sqrt[(1 - 4*x)^11], {x, 0, 50}]/x^4, x] (* _G. C. Greubel_, Jan 30 2017 *) %o A006298 (PARI) A006298(n) = if(n<4,0,if(n==4,21,((5*(n-1)+3)*(4*(n-1)+2)*A006298(n-1))/((5*(n-1)-2)*((n-1)-3)))); \\ _Joerg Arndt_, Apr 07 2013 %o A006298 (PARI) x='x+O('x^66); Vec(21*x^4*(1+x)/sqrt((1-4*x)^11)) \\ _Joerg Arndt_, Apr 07 2013 %Y A006298 Cf. A035309. %K A006298 nonn,easy %O A006298 4,1 %A A006298 _N. J. A. Sloane_ # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE