来自在线整数百科全书的问候语!http://oeis.org/ Search: id:a002852 Showing 1-1 of 1 %I A002852 M0097 N0034 %S A002852 0,1,1,2,1,2,1,4,3,13,5,1,1,8,1,2,4,1,1,40,1,11,3,7,1,7,1,1,5,1,49,4, %T A002852 1,65,1,4,7,11,1,399,2,1,3,2,1,2,1,5,3,2,1,10,1,1,1,1,2,1,1,3,1,4,1,1, %U A002852 2,5,1,3,6,2,1,2,1,1,1,2,1,3,16,8,1,1,2,16,6,1,2,2,1,7,2,1,1,1,3,1,2,1,2 %N A002852 Continued fraction for Euler's constant (or Euler-Mascheroni constant) gamma. %C A002852 The first 970258158 terms were computed by Eric Weisstein on Sep 21 2011 using a developmental version of Mathematica. %C A002852 The first 4851382841 terms were computed by Eric Weisstein on Jul 22 2013 using a developmental version of Mathematica. %D A002852 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. 系列55, 1964(和各种改写),第3页.%%D A00 22552 R. S. Lehman,正则连分数的研究。报告1066,弹道研究实验室,阿伯丁试验场,马里兰州,1959月2日.0%D A00 252 52 N.J.A.斯隆,整数序列手册,学术出版社,1973(包括这个序列).21%A00 22552 N.J.A.斯隆和Simon Plouffe,整数序列百科全书,学术出版社,1995(包括这个序列)。n,a(n)n=0…10000的表%H A00 252 52 M. Abramowitz和I. A. Stegun,EDS。数学函数手册,国家标准局,应用数学。系列55,第十打印,1972 [替代扫描副本] .%%HAA2552 K. Y. Choong,D. E. Daykin和C. R. Rathbone,PI的有理逼近数学。CAMP,25(1971),38~39 2 .% %H AA2552 K. Y. Choong,D. E. Daykin和C. R. Rathbone,π和γ的正则连分式数学。COMP,25(1971),403。欧拉常数到1271位数学。COMP16 1962 55-28 1.0%H A00 22552 Jeffrey C. Lagarias,欧拉常数:欧拉的工作与现代发展公牛。埃默。数学SoC,50(2013),527—628欧拉常数的反对称公式数学。MAG 71(1998),219-220.0%HAA2552 J. Sondow,欧拉常数的非理性判据,PROC。埃默。数学SOC。131(2003),33 35-334 4.0%H A00 22552 J. Sondow,Euler常数和Ln(4/π)的二重积分及Hajikasas公式的一个模拟阿梅尔。数学月112(2005),61-65.0%HA25852 J. Sondow,用Euler常数γ的超几何公式求E^γ的无穷乘积%H A00 228 52 J. Sondow,一个超几何方法,通过对数形式的对数,到Euler常数的非理性准则。Sergey Zlobin附录数学。SLvava 59(2009),1-8%%H A00 22552 J. Sondow和W. Zudilin,Euler常数、q-对数及RAMANUUN1和Gosper公式,Ramanujan J. 12(2006),225-244..%%HAA2552 Eric Weisstein的数学世界,欧拉-马谢罗尼常数Eric Weisstein数学世界,欧拉-马斯切尼常数连分数%H A00 228 52 G. Xiao,断续%H A00常数连分式的索引项%e A002852 0.577215664901532860606512090082402431042... %e A002852 0 + 1/(1 + 1/(1 + 1/(2 + 1/(1 + 1/(2 + 1/(1 + 1/(4 + 1/(3 + 1/(13 + ... %t A002852 ContinuedFraction[EulerGamma, 100] %o A002852 (PARI) default(realprecision, 11000); x=contfrac(Euler); for (n=0, 10000, write("b002852.txt", n, " ", x[n+1])) \\ _Harry J. Smith_, Apr 14 2009 %o A002852 (MAGMA) ContinuedFraction(EulerGamma(100)); // _Vincenzo Librandi_, Oct 19 2017 %Y A002852 Cf. A001620, the decimal expansion, which has many more references. %Y A002852 See also A073004 (exp(gamma)) and A094640 ("alternating Euler constant"). %Y A002852 Cf. A033091 (incrementally largest terms), A033092 (positions of incrementally largest terms). %Y A002852 Cf. A033149 (positions of first occurrence of n in the c.f.). %K A002852 nonn,cofr,nice %O A002852 0,4 %A A002852 _N. J. A. Sloane_. %E A002852 More terms from _Robert G. Wilson v_, Dec 08 2000 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE