来自在线整数百科全书的问候语!Org/y*搜索:ID:A01141,表示1-1的1πA00 1A141145,15111513151113121221152211513132131322115,% %T AA11141 11131213132221211531,1311222113111231 1332 2115,% %U AA11141 13211322121131213212322211521%N A000 1141描述了上一个术语!http://oeIS(方法A -初始项为5).%%C AA11141方法A'=“频率”,其后是“数字”指示。%%C A00 1141 A00 1155、A00 1140、A00 1141、A00 1143、A00 1145、A00 1151和A00 1154除每个术语(种子)的最后一个数字外,都是相同的。这是因为除了1, 2和3以外的数字从来没有出现在其他术语(除了它们的末尾)的这种类型的外观和说序列(如A.CuMuri SuriaNo.A000)中提到的。7月16日,2015 C%A01141A(N+ 1)-A(n)n=5可分为10 ^ 5。-Altutug AlGaNi,DEC 04 2015 2015 %D A000 1141 S. R. Finch,数学常数,剑桥,2003,pp.45 2-45。Addison Wesley,红木城,CA,1991,第4页。n,a(n)n=1…20的表%H A00 1141 J. H. Conway,听觉活跃衰变的奇妙奇妙化学在T.M封面和Gopina,EDS,通信和计算中的公开问题,Springer,NY 1987,pp.173-188.{%AA11141 S. R. Finch,康威常数〔断开链接〕%HA11141 S. R. Finch,康威常数[From the Wayback Machine] %e A001141 The term after 3115 is obtained by saying "one 3, two 1's, one 5", which gives 132115. %t A001141 RunLengthEncode[ x_List ] := (Through[ {First, Length}[ #1 ] ] &) /@ Split[ x ]; LookAndSay[ n_, d_:1 ] := NestList[ Flatten[ Reverse /@ RunLengthEncode[ # ] ] &, {d}, n - 1 ]; F[ n_ ] := LookAndSay[ n, 5 ][ [ n ] ]; Table[ FromDigits[ F[ n ] ], {n, 1, 11} ] (* _Zerinvary Lajos_, Mar 21 2007 *) %Y A001141 Cf. A001155, A005150, A006751, A006715, A001140, A001143, A001145, A001151, A001154. %K A001141 nonn,base,easy,nice %O A001141 1,1 %A A001141 _N. J. A. Sloane_ # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE