来自在线整数百科全书的问候语!http://oeis.org/ Search: id:a000210 Showing 1-1 of 1 %I A000210 M2393 N0950 %S A000210 1,3,5,6,8,10,12,13,15,17,18,20,22,24,25,27,29,30,32,34,36,37,39,41, %T A000210 42,44,46,48,49,51,53,54,56,58,60,61,63,65,67,68,70,72,73,75,77,79,80, %U A000210 82,84,85,87,89,91,92,94,96,97,99,101,103,104,106,108,109,111,113,115,116 %N A000210 A Beatty sequence: floor(n*(e-1)). %C A000210 The first 38 terms coincide with the corresponding terms of A082977, i.e., numbers that are congruent to {0, 1, 3, 5, 6, 8, 10} mod 12. 3月24日,2006 G.A.02210 N.J.A.斯隆,整数序列手册,学术出版社,1973(包括这个序列).21%A000 0210 N.J.A.斯隆和Simon Plouffe,整数序列百科全书,学术出版社,1995(包括这个序列).%%HA00210 Alois P. Heinz,n,a(n)n=1…1000的表%H A000 0210 I.G.康奈尔,Beatty序列的一些性质ⅡCanad。数学。公牛,3(1960),17-22.0%H A000 0210与Beatty序列相关的序列索引条目%p A000210 a:= n-> floor (n*(exp(1)-1)): seq (a(n), n=1..200); # _Alois P. Heinz_, Aug 25 2008 %t A000210 Table[Floor[n*(E - 1)], {n, 0, 100}] (* _T. D. Noe_, Jan 21 2013 *) %K A000210 nonn %O A000210 1,2 %A A000210 _N. J. A. Sloane_ %E A000210 More terms from _James A. Sellers_, Jul 06 2000 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE