登录
OEIS由OEIS基金会的许多慷慨捐赠者.

 

标志
提示
(来自的问候整数序列在线百科全书!)
搜索: a286785-编号:a286788
显示找到的5个结果中的1-5个。 第页1
    排序:关联|参考文献||被改进的|已创建     格式:长的|短的|数据
A286781型 行读取的三角形T(n,k):公式部分中定义的多项式P_n(T)的系数。 +10
18
1, 2, 1, 10, 9, 1, 74, 91, 23, 1, 706, 1063, 416, 46, 1, 8162, 14193, 7344, 1350, 80, 1, 110410, 213953, 134613, 34362, 3550, 127, 1, 1708394, 3602891, 2620379, 842751, 125195, 8085, 189, 1, 29752066, 67168527, 54636792, 20862684, 4009832, 382358, 16576, 268, 1, 576037442, 1375636129, 1223392968, 533394516, 124266346, 15653598, 1023340, 31356, 366,1 (列表;桌子;图表;参考;;历史;文本;内部格式)
偏移
0,2
评论
T(n,k)是具有k个费曼环的费曼图的数量,在具有两体相互作用的费米子多体理论中,自能函数的零维微扰展开为n级(参见Molinari链接)。
链接
Gheorghe Coserea,行n=0..122,扁平
卢卡·莫利纳里,赫丁方程与费曼图的列举,arXiv:cond-mat/0401500[cond-mat.str-el],2005年。
配方奶粉
y(x;t)=Sum_{n>=0}P_n(t)*x^n满足y*(1-x*y)^2=(1+x*y+2*x^2*导数(y,x))*(1-x*y*(1-t)),y(0;t)=1,其中P_n。
A000698号(n+1)=T(n,0),A101986年(n) =T(n,n-1),A000108号(n) =P_n(-1),A286794型(n) =P_n(1)。
例子
A(x;t)=1+(2+t)*x+(10+9*t+t^2)*x^2+(74+91*t+23*t^2+t^3)*x*3+。。。
三角形开始:
n\k[0][1][2][3][4][5][6][7][8]
[0] 1;
[1] 2, 1;
[2] 10, 9, 1;
[3] 74, 91, 23, 1;
[4] 706, 1063, 416, 46, 1;
[5] 8162, 14193, 7344, 1350, 80, 1;
[6] 110410, 213953, 134613, 34362, 3550, 127, 1;
[7] 1708394, 3602891, 2620379, 842751, 125195, 8085, 189, 1;
[8] 29752066, 67168527, 54636792, 20862684, 4009832, 382358, 16576, 268, 1;
[9] ...
数学
最大值=10;y0[x_,t]=1;y1[x_,t]=0;对于[n=1,n<=最大,n++,y1[x_,t_]=(1+x*y0[x,t]+2*x^2*D[y0[x,t],x])*(1-x*y0[x,t]*(1-t))/(1-x*y0[x-t])^2+O[x]^n//正常;y0[x_,t]=y1[x,t]];
行[n_]:=系数列表[系数[y0[x,t],x,n],t];
表[行[n],{n,0,max-1}]//展平(*Jean-François Alcover公司2017年5月19日,改编自PARI*)
黄体脂酮素
(PARI)
A286781型_ser(N,t=t)={
my(x='x+O('x^N),y0=1+O('x^N),y1=0,N=1);
而(n++,
y1=(1+x*y0+2*x^2*y0')*(1-x*y0*(1-t))/(1-x*y0)^2;
如果(y1==y0,break());y0=y1;);
年;
};
concat(应用(p->Vecrev(p),Vec(A286781型_ser(10)))
\\测试:y=A286781型_ser(50);y*(1-x*y)^2==(1+x*y+2*x^2*导数(y,'x))*(1-x*y*(1-t))
交叉参考
有关顶点和偏振函数,请参见A286782型A286783型有关自能和极化函数的GWA,请参见A286784型A286785型.
k=0-8列给出:A000698号(k=0),A286786型(k=1),A286787型(k=2),A286788型(k=3),A286789型(k=4),A286790型(k=5),A286791型(k=6),286792英镑(k=7),A286793型(k=8)。
关键词
非n,
作者
Gheorghe Coserea公司2017年5月14日
状态
经核准的
A286795型 行读取的三角形T(n,k):公式部分中定义的多项式P_n(T)的系数。 +10
5
1, 1, 4, 3, 27, 31, 5, 248, 357, 117, 7, 2830, 4742, 2218, 314, 9, 38232, 71698, 42046, 9258, 690, 11, 593859, 1216251, 837639, 243987, 30057, 1329, 13, 10401712, 22877725, 17798029, 6314177, 1071809, 81963, 2331, 15, 202601898, 472751962, 404979234, 166620434, 35456432, 3857904, 196532, 3812, 17, 4342263000, 10651493718, 9869474106, 4561150162, 1149976242, 160594860, 11946360, 426852, 5904, 19 (列表;图表;参考;;历史;文本;内部格式)
偏移
0.3
评论
行n>0包含n个术语。
“解的级数展开计算带有修饰传播子和裸交互的骨架顶点图。”(参见Molinari链接中的G^2v-骨架展开)
链接
Gheorghe Coserea,行n=0..123,扁平
卢卡·莫利纳里(Luca G.Molinari)、尼古拉·马尼尼(Nicola Manini)、,许多人体骨架图的枚举,arXiv:cond-mat/0512342[cond-mat.str-el],2006年。
配方奶粉
y(x;t)=Sum_{n>=0}P_n(t)*x^n满足0=1-(1+2*x*t)*y+x*(1+2*t+x*t^2)*y^2+t*(1-t)*x2*y^3+2*x^2*y*导数(y,x),y(0;t)=1,其中P_n。
A000699号(n+1)=T(n,0),1=P_n(-1),A049464号(n+1)=P_n(1)。
例子
A(x;t)=1+x+(4+3*t)*x^2+(27+31*t+5*t^2)*x*3+。。。
三角形开始:
n\k[0][1][2][3][4][5][6][7]
[0] 1;
[1] 1;
[2] 4, 3;
[3] 27, 31, 5;
[4] 248, 357, 117, 7;
[5] 2830, 4742, 2218, 314, 9;
[6] 38232, 71698, 42046, 9258, 690, 11;
[7] 593859, 1216251, 837639, 243987, 30057, 1329, 13;
[8] 10401712, 22877725, 17798029, 6314177, 1071809, 81963, 2331, 15;
[9] ...
数学
最大值=11;y0[x_,t]=1;y1[x_,t]=0;对于[n=1,n<=max,n++,y1[x_,t_]=((1+x*(1+2t+xt^2)y0[x,t]^2+t(1-t)*x^2*y0[x,t]|3+2x^2y0[x,t]D[y0[x-t],x])/(1+2x*t)+O[x]^n//正常;y0[x_,t]=y1[x,t]];
行[n_]:=系数列表[系数[y0[x,t],x,n],t];
表[行[n],{n,0,最大-1}]//展平(*Jean-François Alcover公司2017年5月23日,改编自PARI*)
黄体脂酮素
(PARI)
A286795型_ser(N,t=t)={
我的(x='x+O('x^N),y0=1,y1=0,N=1);
而(n++,
y1=(1+x*(1+2*t+x*t^2)*y0^2+t*(1-t)*x^2*y0|3+2*x^2*y0*y0');
y1=y1/(1+2*x*t);如果(y1==y0,break());y0=y1;);年;
};
concat(应用(p->Vecrev(p),Vec(A286795型_ser(11)))
\\测试:y=A286795型_ser(50);0==1-(1+2*x*t)*y+x*(1+2*t+x*t^2)*y^2+t*(1-t)*x^2*y^3+2*x^2*y*y'
交叉参考
关键词
非n,标签
作者
Gheorghe Coserea公司2017年5月21日
状态
经核准的
A286798型 行读取的三角形T(n,k):公式部分中定义的多项式P_n(T)的系数。 +10
4
1, 1, 4, 2, 27, 22, 248, 264, 30, 2830, 3610, 830, 8, 38232, 55768, 18746, 1078, 593859, 961740, 414720, 46986, 576, 10401712, 18326976, 9457788, 1593664, 62682, 112, 202601898, 382706674, 226526362, 49941310, 3569882, 45296, 4342263000, 8697475368, 5740088706, 1540965514, 160998750, 4909674, 16896, 101551822350, 213865372020, 154271354280, 48205014786, 6580808784, 337737294, 4200032, 2560 (列表;图表;参考;;历史;文本;内部格式)
偏移
0.3
评论
行n>0包含楼层(2*(n+1)/3)术语。
链接
Gheorghe Coserea,行n=0..123,扁平
卢卡·莫利纳里(Luca G.Molinari)、尼古拉·马尼尼(Nicola Manini)、,许多人体骨架图的枚举,arXiv:cond-mat/0512342[cond-mat.str-el],2006年。
配方奶粉
y(x;t)=Sum_{n>=0}P_n(t)*x^n满足x^2*导数(y,x)=(1-y+x*y^2+2*x^2*t*y^3)/(t-(2+t)*y-3*x*t*y ^2),y(0;t)=1,其中P_n。
A000699号(n+1)=T(n,0),A000108号(n) =P_n(-1),A286799型(n) =P_n(1)。
例子
A(x;t)=1+x+(4+2*t)*x^2+(27+22*t)*x^3+(248+264*t+30*t^2)*x*4+
三角形开始:
n\k[0][1][2][3][4][5]
[0] 1;
[1] 1;
[2] 4, 2;
[3] 27, 22;
[4] 248, 264, 30;
[5] 2830, 3610, 830, 8;
[6] 38232、55768、18746、1078;
[7] 593859, 961740, 414720, 46986, 576;
[8] 10401712, 18326976, 9457788, 1593664, 62682, 112;
[9] 202601898, 382706674, 226526362, 49941310, 3569882, 45296;
[10] ...
数学
最大值=12;y0[x_,t]=1;y1[x_,t]=0;对于[n=1,n<=最大值,n++,y1[x_,t_]=1+x y0[x,t]^2+3 t x ^3 y0[x,t]*2 D[y0[x],t],x]+x^2(2 y0[x,t]D[y0[x,t],x]+t简化;y0[x_,t]=y1[x,t]];
P[n_,t_]:=系数[y0[x,t],x,n];
行[n_]:=系数列表[P[n,t],t];
表[行[n],{n,0,max}]//展平(*Jean-François Alcover公司2017年5月24日,改编自PARI*)
黄体脂酮素
(PARI)
A286795型_ser(N,t=t)={
我的(x='x+O('x^N),y0=1,y1=0,N=1);
而(n++,
y1=(1+x*(1+2*t+x*t^2)*y0^2+t*(1-t)*x^2*y0|3+2*x^2*y0*y0');
y1=y1/(1+2*x*t);如果(y1==y0,break());y0=y1;);年;
};
A286798型_ser(N,t=t)={
我的(v)=A286795型_ser(N,t));subst(v,'x,serreverse(x/(1-x*t*v)));
};
concat(应用(p->Vecrev(p),Vec(A286798型_ser(12)))
\\测试:y=A286798型_ser(50);x^2*y'==(1-y+x*y^2+2*x^2*t*y^3)/(t-(2+t)*y-3*x*t*y*2)
交叉参考
关键词
非n,标签
作者
Gheorghe Coserea公司2017年5月21日
状态
经核准的
A286800型 行读取的三角形T(n,k):公式部分中定义的多项式P_n(T)的系数。 +10
4
1、1、2、7、6、63、74、10、729、974、254、8、10113、15084、5376、406、161935、264724、117424、14954、320、2923135、5163276、2697804、481222、23670、112、58547661、110483028、65662932、14892090、1186362、21936、1286468225、2570021310、1695874928、461501018、51034896、1866986、11264、30747331223、64547199082、4661697760、14603254902,20558551560中, 116329886, 1905888, 2560 (列表;图表;参考;;历史;文本;内部格式)
偏移
1,3
评论
行n>0包含楼层(2*(n+1)/3)术语。
链接
Gheorghe Coserea,行n=1..123,扁平
卢卡·莫利纳里(Luca G.Molinari)、尼古拉·马尼尼(Nicola Manini)、,许多人体骨架图的枚举,arXiv:cond-mat/0512342[cond-mat.str-el],2006年。
配方奶粉
y(x;t)=Sum_{n>0}P_n(t)*x^n满足x*导数(y,x)=(1-y)*(2*t*x^2*(1-y)^2+x*(1-y)-y)/。
A049464号(n) =T(n,0),P_n(-1)=(-1)^(n-1),A287029型(n) =P_n(1)。
例子
A(x;t)=x+(1+2*t)*x^2+(7+6*t)*x^3+(63+74*t+10*t^2)*x*4+。。。
三角形开始:
n\k[0][1][2][3][4][5]
[1] 1;
[2] 1, 2;
[3] 7, 6;
[4] 63, 74, 10;
[5] 729, 974, 254, 8;
[6] 10113, 15084, 5376, 406;
[7] 161935, 264724, 117424, 14954, 320;
[8] 2923135, 5163276, 2697804, 481222, 23670, 112;
[9] 58547761, 110483028, 65662932, 14892090, 1186362, 21936;
[10] ...
数学
最大值=12;y0[0,_]=y1[0,_]=0;y0[x_,t]=x;y1[x_,t]=0;对于[n=1,n<=最大值,n++,y1[x_,t_]=正常值[(1/(-1+y0[x,t]))*x*(-1-y0[x,t]^2-2*y0[y,t]*(-1+D[y0[x-,t],x])+t*x*[y0[x,t],x])+O[x]^n];y0[x_,t]=y1[x,t]];
行[n_]:=系数列表[SeriesCoefficient[y0[x,t],{x,0,n}],t];
扁平[表格[行[n],{n,0,max-1}]](*Jean-François Alcover公司2017年5月24日,改编自PARI*)
黄体脂酮素
(PARI)
A286795型_ser(N,t=t)={
我的(x='x+O('x^N),y0=1,y1=0,N=1);
而(n++,
y1=(1+x*(1+2*t+x*t^2)*y0^2+t*(1-t)*x^2*y0|3+2*x^2*y0*y0');
y1=y1/(1+2*x*t);如果(y1==y0,break());y0=y1;);年;
};
A286798型_ser(N,t=t)={
我的(v)=A286795型_ser(N,t));subst(v,'x,serreverse(x/(1-x*t*v)));
};
A286800型_ser(N,t=t)={
我的(v)=A286798型_ser(N,t));1-1/subst(v,'x,serreverse(x*v^2));
};
concat(应用(p->Vecrev(p),Vec(A286800型_ser(12)))
\\测试:y=A286800型_ser(50);x*y'==(1-y)*(2*t*x^2*(1-y
交叉参考
关键词
非n,标签
作者
Gheorghe Coserea公司2017年5月22日
状态
经核准的
A286796型 行读取的三角形T(n,k):公式部分中定义的多项式P_n(T)的系数。 +10
2
1, 1, 1, 4, 5, 1, 27, 40, 14, 1, 248, 419, 200, 30, 1, 2830, 5308, 3124, 700, 55, 1, 38232, 78070, 53620, 15652, 1960, 91, 1, 593859, 1301088, 1007292, 356048, 60550, 4704, 140, 1, 10401712, 24177939, 20604768, 8430844, 1787280, 194854, 10080, 204, 1, 202601898, 495263284, 456715752, 209878440, 52619854, 7322172, 545908, 19800, 285, 1, 4342263000, 11085720018, 10921213644, 5516785032, 1579263840, 264576774, 25677652, 1372228, 36300, 385, 1 (列表;桌子;图表;参考;;历史;文本;内部格式)
偏移
0,4
链接
Gheorghe Coserea,行n=0..123,扁平
卢卡·莫利纳里(Luca G.Molinari)、尼古拉·马尼尼(Nicola Manini)、,许多人体骨架图的枚举,arXiv:cond-mat/0512342[cond-mat.str-el],2006年。
配方奶粉
A(x;t)=Sum_{n>=0}P_n(t)*x^n=v/(1-x*t*v),其中v(x;t)=A286795型(x;t)和P_n(t)=和{k=0..n}t(n,k)*t^k。
A000699号(n+1)=T(n,0),A000330号(n) =T(n,n-1),A286797型(n) 当n>0时,=P_n(1)和P-n(-1)=0。
例子
A(x;t)=1+(1+t)*x+(4+5*t+t^2)*x^2+(27+40*t+14*t^2+t^3)*x^3+。。。
三角形开始:
n\k[0][1][2][3][4][5][6][7][8]
[0] 1;
[1] 1; 1;
[2] 4, 5, 1;
[3] 27, 40, 14, 1;
[4] 248, 419, 200, 30, 1;
[5] 2830, 5308, 3124, 700, 55, 1;
[6] 38232, 78070, 53620, 15652, 1960, 91, 1;
[7] 593859, 1301088, 1007292, 356048, 60550, 4704, 140, 1;
[8] 10401712, 24177939, 20604768, 8430844, 1787280, 194854, 10080, 204, 1;
[9] 。。。
数学
最大值=11;y0[x_,t]=1;y1[x_,t]=0;对于[n=1,n<=max,n++,y1[x_,t_]=Normal[(1+x*(1+2*t+x*t^2)*y0[x,t]^2+t*(1-t)*x^2*y0[x,t]^3+2*x^2*y0[x,t]*D[y0[x,t],x])/(1+2*x*t)+O[x]^n];y0[x_,t]=y1[x,t]];
行[n_]:=系数列表[系列系数[y0[x,t]/(1-x*t*y0[x,t]),{x,0,n}],t];
扁平[表格[行[n],{n,0,max-1}]](*Jean-François Alcover公司2017年5月23日,改编自PARI*)
黄体脂酮素
(PARI)
A286795型_ser(N,t=t)={
我的(x='x+O('x^N),y0=1,y1=0,N=1);
而(n++,
y1=(1+x*(1+2*t+x*t^2)*y0^2+t*(1-t)*x^2*y0|3+2*x^2*y0*y0');
y1=y1/(1+2*x*t);如果(y1==y0,break());y0=y1;);年;
};
A286796型_ser(N,t=t)=我的(v=A286795型_ser(N,t));v/(1-x*t*v);
concat(应用(p->Vecrev(p),Vec(A286796型_ser(11)))
交叉参考
关键词
非n,
作者
Gheorghe Coserea公司2017年5月21日
状态
经核准的
第页1

搜索在0.007秒内完成

查找|欢迎光临|维基|注册|音乐|地块2|演示|索引|浏览|更多|网络摄像头
贡献新序列。或评论|格式|样式表|变换|超级搜索|最近
OEIS社区|维护人OEIS基金会。

许可协议、使用条款、隐私政策。.

上次修改时间:美国东部夏令时2024年4月18日20:10。包含371781个序列。(在oeis4上运行。)