登录
OEIS由OEIS基金会的许多慷慨捐赠者.

 

标志
提示
(来自的问候整数序列在线百科全书!)
搜索: a080577-编号:a080557
显示找到的109个结果中的1-10个。 第页12 4 5 6 7 8 9 10 11
    排序:关联|参考文献||被改进的|创建     格式:长的|短的|数据
A063008号 标准分区序列(请参见A080577号)通过素分解编码。p1>=p2>=p3>=…的分区[p1,p2,p3,…]。。。编码为2^p1*3^p2*5^p3*。 +20
34
1, 2, 4, 6, 8, 12, 30, 16, 24, 36, 60, 210, 32, 48, 72, 120, 180, 420, 2310, 64, 96, 144, 240, 216, 360, 840, 900, 1260, 4620, 30030, 128, 192, 288, 480, 432, 720, 1680, 1080, 1800, 2520, 9240, 6300, 13860, 60060, 510510, 256, 384, 576, 960, 864, 1440, 3360 (列表;图表;参考;;历史;文本;内部格式)
抵消

0,2

评论

分区首先按总和排序。然后将n的所有分区视为n个变量上的指数元组,并将其对应的单项式按逆字典序排序。这给出了一个规范排序:[][1][2,0][1,1][3,0,0][2,1,0][1,1,1][4,0,0:0][3,1,0][2,2,0,0][2,1,1,0][1,1,1]。。。重新安排A025487号,A036035型等。

或者,每个素数签名的最小整数;根据中描述的整数分区进行重排序A080577号. -阿尔福德·阿诺德2008年2月13日

链接

阿洛伊斯·海因茨,行n=0..30,扁平

S.-H.Cha、E.G.DuCasse和L.V.Quintas,基于除关系和素数签名排序的图不变量,arXiv:1405.5283[math.NT],2014年。

配方奶粉

bigomega(T(n,k))=n-安德鲁·霍罗伊德2020年3月28日

例子

n=5的分区[2,1,1]得出2^2*3*5*7=420。

序列开始:

1;

2;

4, 6;

8, 12, 30;

16, 24, 36, 60, 210;

32, 48, 72, 120, 180, 420, 2310;

64, 96, 144, 240, 216, 360, 840, 900, 1260, 4620, 30030;

...

MAPLE公司

使用(组合):A063008号_行:=proc(n)局部e,w,r;

r:=程序(L)局部B,i;B:=空;

i从nops(L)到-1 do

B:=B,L[i]od;[%]结束:

w:=proc(e)局部i,m,p,p;m:=无穷大;

P:=置换([seq(ithprime(i),i=1..nops(e))]);

对于p do m中的p:=min(m,mul(p[i]^e[i],i=1..nops(e))od结束:

[seq(w(e),e=r(分区(n)))]结束:

seq(打印(A063008号_第(i)行),i=0..6)#彼得·卢什尼2011年1月23日

#第二个Maple项目:

b: =(n,i)->`如果`(n=0或i=1,[[1$n]],[map(x->

[i,x[]],b(n-i,最小值(n-i、i))[],b(n,i-1)[]]):

T: =n->映射(x->mul(ithprime(i)^x[i],i=1..nops(x)),b(n$2))[]:

seq(T(n),n=0..9)#阿洛伊斯·海因茨2019年9月3日

数学

行[n_]:=乘积[Prime[k]^#[[k]],{k,1,Length[#]}]&/@IntegerPartitions[n];表[行[n],{n,0,8}]//展平(*Jean-François Alcover公司2012年12月10日*)

b[n_,i_]:=b[n,i]=如果[n==0||i==1,{表[1,{n}]},连接[Prepend[#,i]&/@b[n-i,Min[n-i、i]],b[n、i-1]];

T[n_]:=乘积[素数[i]^#[i]],{i,1,长度[#]}]&/@b[n,n];

T/@范围[0,9]//展平(*Jean-François Alcover公司2021年6月9日之后阿洛伊斯·海因茨*)

交叉参考

囊性纤维变性。A001222号(bigomega),A025487号,A059901号.

请参见A080576号Maple(分级反映词典)排序。

请参见A080577号Mathematica(分级反向词典)排序。

请参见A036036号“Abramowitz and Stegun”(分级反射色谱)排序。

请参见A036037号用于分级色谱排序。

关键词

非n,,标签

作者

Antonio G.Astudillo(afg_Astudillo(AT)hotmail.com),2001年7月2日

扩展

部分编辑人N.J.A.斯隆5月15日,根据的建议R.J.马塔尔

更正人和(次要)编辑人丹尼尔·福格斯2011年1月3日

状态

经核准的

A331581型 分级逆排序第n个整数分区的最大部分(A080577号); a(1)=0。 +20
11
0, 1, 2, 1, 3, 2, 1, 4, 3, 2, 2, 1, 5, 4, 3, 3, 2, 2, 1, 6, 5, 4, 4, 3, 3, 3, 2, 2, 2, 1, 7, 6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 1, 8, 7, 6, 6, 5, 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 1, 9, 8, 7, 7, 6, 6, 6, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 1 (列表;图表;参考;;历史;文本;内部格式)
抵消

1,3

评论

排名第一的分区A080577号是();没有第零分区。

链接

n=1..97时的n,a(n)表。

OEIS Wiki,分区的顺序

维基大学,词汇和词汇顺序

配方奶粉

a(n)=A061395号(A129129号(n-1))。

例子

所有分区的顺序以分级的反向图解顺序开始,如下所示。这些术语是最初的部分。

() (3,2) (2,1,1,1,1) (2,2,1,1,1)

(1) (3,1,1) (1,1,1,1,1,1) (2,1,1,1,1,1)

(2) (2,2,1) (7) (1,1,1,1,1,1,1)

(1,1) (2,1,1,1) (6,1) (8)

(3) (1,1,1,1,1) (5,2) (7,1)

(2,1) (6) (5,1,1) (6,2)

(1,1,1) (5,1) (4,3) (6,1,1)

(4) (4,2) (4,2,1) (5,3)

(3,1) (4,1,1) (4,1,1,1) (5,2,1)

(2,2) (3,3) (3,3,1) (5,1,1,1)

(2,1,1) (3,2,1) (3,2,2) (4,4)

(1,1,1,1) (3,1,1,1) (3,2,1,1) (4,3,1)

(5) (2,2,2) (3,1,1,1,1) (4,2,2)

(4,1) (2,2,1,1) (2,2,2,1) (4,2,1,1)

三角形开始:

0

1

2 1

3 2 1

4 3 2 2 1

5 4 3 3 2 2 1

6 5 4 4 3 3 3 2 2 2 1

7 6 5 5 4 4 4 3 3 3 3 2 2 2 1

8 7 6 6 5 5 5 4 4 4 4 4 3 3 3 3 3 2 2 2 2 1

数学

revlexsort[f_,c_]:=有序Q[PadRight[{c,f}]];

前缀[First/@Join@@Table[Sort[IntegerPartitions[n],revlexsort],{n,8}],0]

交叉参考

行长度为A000041号.

按词汇顺序排列的反向分区是A026791号.

逆时针顺序分区为A026792号.

Abramowitz-Stegun顺序的反向分区(sum/length/lex)为A036036号.

合成的版本是A065120型A333766飞机.

逆字典序分区是A080577号.

这些分区的不同部分按A115623号.

按词汇排序的分区是A193073号.

阴道镜有序分区为A211992型.

这些分区的长度为A238966型.

囊性纤维变性。A036037号,A048793号,A063008号,A066099型,A129129号,A185974号,A228100型,A228531型,A334301飞机,A334434飞机,A334436飞机,A334438型.

关键词

非n,标签

作者

古斯·怀斯曼2020年5月8日

状态

经核准的

A131822号 对于从以下公式导出的最小素数签名序列的每个项,增加每个素数因子A080577号. +20
4
1, 3, 9, 15, 27, 45, 105, 81, 135, 225, 315, 1155, 243, 405, 675, 945, 1575, 3465, 15015, 729, 1215, 2025, 2835, 3375, 4725, 10395, 11025, 17325, 45045, 255255, 2187, 3645, 6075, 8505, 10125, 14175, 31185, 23625, 33075, 51975, 135135, 121275, 225225 (列表;图表;参考;;历史;文本;内部格式)
抵消

1,2

链接

n=1..43时的n,a(n)表。

配方奶粉

a(n)=A003961号(A036035型(n-1))-R.J.马塔尔2007年11月11日

例子

术语30=2*3*5变为105=3*5*7。

发件人A080577号我们获得

1

2

4, 6

8, 12, 30

16, 24, 36, 60, ...

等。

所以序列开始了

1

9, 15

27, 45, 105

81, 135, 225, 315, ...

等。

MAPLE公司

A003961号:=proc(n)局部ifs,i;ifs:=ifactors(n)[2];mul(下一素数(op(1,i))^op(2,i),i=ifs);结束时间:A036042号:=程序(n)局部a,nredu;a:=0;nredu:=n+1;当nredu>0时,do nredu:=nredu-combinat[numbpart](a);a:=a+1;od:返回(a-1);结束时间:A036035型:=进程(n)本地行,idx,pa,a,i;如果n=0,则为1;else行:=A036042号(n) ;idx:=n-add(组合[numbpart](i),i=0..行-1);pa:=op(-idx-1,组合[分区](行));a:=1;对于i从1到nops(pa),做a:=a*ithprime(i)^op(-i,pa);od;返回(a);fi;结束时间:A131822号:=进程(n)A003961号(A036035型(n-1));结束:seq(A131822号(n) ,n=1..80)#R.J.马塔尔2007年11月11日

交叉参考

囊性纤维变性。A080577号,A131801型.

关键词

标签,容易的,非n

作者

阿尔福德·阿诺德2007年7月19日

扩展

更正和扩展人R.J.马塔尔2007年11月11日

状态

经核准的

A213952型 考虑逆字典序中n的划分(A080577号),a(n)是具有最大LCM的n的分区的位置。请参见A000793号. +20
1, 1, 1, 1, 3, 1, 5, 5, 8, 15, 13, 33, 49, 35, 49, 73, 107, 143, 211, 293, 398, 505, 510, 685, 710, 948, 740, 994, 2033, 1735, 2266, 1780, 2333, 4653, 5923, 7311, 9213, 7683, 9719, 17878, 14703, 19072, 22814, 28266, 34878, 42876, 52390 (列表;图表;参考;;历史;文本;内部格式)
抵消

1,5

评论

随着n的增长,a(n)/P(n)->~1/3,其中P(n)为A000041号(n) ●●●●。

链接

Robert G.Wilson v,n=1..84时的n,a(n)表

例子

a(5)=3是因为5,{{5},{4,1},}3,2},{3,1,1}、{2,2,1}、}2,1,1},{1,1,1}}的七个分区;每个LCM为:{5、4、6、3、2、2、1}。第三个是最大值。

数学

f[n_]:=块[{lst=Apply[LCM,Integer Partitions@n,1]},展平[Position[lst,Max@lst,1,1],1][1];数组[f,47]

交叉参考

囊性纤维变性。A000793号,A080577号,A000041号.

关键词

非n

作者

罗伯特·威尔逊v2012年7月4日

状态

经核准的

A124920号 记录值的位置A080577号; 也是的部分和A006128号加1。 +20
2
1, 2, 5, 11, 23, 43, 78, 132, 218, 346, 538, 813, 1212, 1768, 2548, 3616, 5079, 7044, 9688, 13186, 17816, 23868, 31767, 41973, 55147, 71998, 93520, 120814, 155359, 198812, 253375, 321510, 406437, 511803, 642265, 803141, 1001155, 1243967 (列表;图表;参考;;历史;文本;内部格式)
抵消

1,2

链接

瓦茨拉夫·科特索维奇,n=1..10000时的n,a(n)表

配方奶粉

A124920号(n)=A124920号(n-1)+A006128号(n-1),n>1;a(1)=1。

通用公式:x/(1-x)+求和{i>=1}i*x^(i+1)/(1-x)*产品{j=1..i}1/(1-x^j)-伊利亚·古特科夫斯基2017年4月4日

a(n)~exp(Pi*sqrt(2*n/3))*(log(6*n)+2*gamma-2*log(Pi))*sqrt(3)/(4*Pi^2),其中gamma是Euler-Mascheroni常数(A001620号). -瓦茨拉夫·科特索维奇2018年5月19日

例子

A080577号开始

1

2 11

3 21 111

4 31 22 211 1111

5 41 32 311 221 2111 11111

6 51 42 411 33 321 3111 222 2211 21111 111111

因此A124920号开始于1 2 5 11 23。。。

MAPLE公司

A008284号:=proc(n,k),如果n>=1且n=k或k=1,则1 elif k>n,否则0相加(A008284号(n-k,i),i=1..k);fi;结束时间:A006128号:=过程(n)加上(k*A008284号(n,k),k=1..n);结束:a:=1:printf(“%d,”,a);对于从2到80的n,执行a:=a+A006128号(n-1):打印f(“%d,”,a);日期:#R.J.马塔尔2007年1月13日

交叉参考

囊性纤维变性。A000041号,A006128号,A080577号.

关键词

容易的,非n

作者

阿尔福德·阿诺德2006年11月13日

扩展

更多术语来自R.J.马塔尔2007年1月13日

名称澄清伊利亚·古特科夫斯基2017年4月4日

状态

经核准的

A176207号 中列出的分区排列A080577号分区长度列于A176208号; 桌子有形状A058884号. +20
2
1, 2, 1, 3, 1, 2, 1, 2, 3, 1, 4, 1, 3, 1, 1, 2, 2, 1, 2, 1, 1, 2, 4, 2, 3, 1, 1, 5, 1, 4, 1, 1, 3, 2, 1, 3, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1 (列表;图表;参考;;历史;文本;内部格式)
抵消

1,2

评论

通过考虑以下部分和来选择排列A080577号:

1

1 2 11

1 2 11 3 21 111

然后在值前面加上A176206号顺从的

1

2 11

3 21 12 111

4 31 22 211 13 121 1111

等。

出现在中的案例A080577号不包括在a(n)中。

链接

n=1..47时的n,a(n)表。

例子

表格开始于12 13..121 23…14..131..122..1211 24..231…15..141…132..1311..1221..12111

交叉参考

A058884号 A080577号 A176206号 A176208号

关键词

非n,标签,未经编辑的

作者

阿尔福德·阿诺德2010年4月12日

状态

经核准的

A209936型 序列对应的n的k次划分的重数三角形A080577号。n到k个部件的给定分区的倍数是从k个可区分的箱子中选择部件的方式数。请参见示例。 +20
2
1, 2, 1, 3, 6, 1, 4, 12, 6, 12, 1, 5, 20, 20, 30, 30, 20, 1, 6, 30, 30, 60, 15, 120, 60, 20, 90, 30, 1, 7, 42, 42, 105, 42, 210, 140, 105, 105, 420, 105, 140, 210, 42, 1, 8, 56, 56, 168, 56, 336, 280, 28, 336, 168, 840, 280, 168, 420, 840, 1120, 168, 70, 560 (列表;桌子;图表;参考;;历史;文本;内部格式)
抵消

1,2

评论

不同于A035206号位置21之后。

不同于A210238型位置21之后。

链接

n=1..63时的n,a(n)表。

谢尔盖·维兹纽克,C程序

例子

1

2, 1

3, 6, 1

4, 12, 6, 12, 1

5, 20, 20, 30, 30, 20, 1

6, 30, 30, 60, 15, 120, 60, 20, 90, 30, 1

7, 42, 42, 105, 42, 210, 140, 105, 105, 420, 105, 140, 210, 42, 1

因此,对于n=3(第三行),n=3的分区为

3+0+0 0+3+0 0+0+3(重数=3)

2+1+0 2+0+1 1+2+0 1+0+2 0+2+1 0+1+2(重数=6)

1+1+1(多重性=1)

交叉参考

囊性纤维变性。A080577号,A078760型,A035206号,A210238型.

关键词

非n,

作者

谢尔盖·维兹纽克2012年3月15日

状态

经核准的

A322762型 按行读取的不规则三角形:要获得第n行,按如下顺序对n进行分区A080577号,在每个分区中,将k的每个第j次出现更改为j;使用压缩表示法A322761型. +20
2
1, 1, 12, 1, 11, 123, 1, 11, 12, 112, 1234, 1, 11, 11, 112, 121, 1123, 12345, 1, 11, 11, 112, 12, 111, 1123, 123, 1212, 11234, 123456, 1, 11, 11, 112, 11, 111, 1123, 121, 112, 1112, 11234, 1231, 12123, 112345, 1234567, 1, 11, 11, 112, 11, 111, 1123, 12, 111 (列表;图表;参考;;历史;文本;内部格式)
抵消

1,3

参考文献

D.E.Knuth,《计算机编程的艺术》,第4A卷,第7.2.1.5节,问题73,第415、761页。

链接

阿洛伊斯·海因茨,行n=1..28,扁平

例子

三角形开始:

1,

1, 12,

1, 11, 123,

1, 11, 12, 112, 1234,

1, 11, 11, 112, 121, 1123, 12345,

1, 11, 11, 112, 12, 111, 1123, 123, 1212, 11234, 123456,

...

例如,6个分区中的11个分区是:

6, 51, 42, 411, 33, 321, 3111, 222, 2211, 21111, 111111,

并应用我们得到的转换:

1, 11, 11, 112, 12, 111, 1123, 123, 1212, 11234, 123456.

MAPLE公司

b: =(n,i)->`如果`(n=0或i=1,[猫($1..n)],[(t->

seq(映射(x->cat($1..(t+1-j),x),b(n-i*(t+1-j))

,i-1))[],j=1..t))(iquo(n,i)),b(n,i-1,[]]):

T: =n->map(解析,b(n$2))[]:

seq(T(n),n=1..10)#阿洛伊斯·海因茨2018年12月30日

交叉参考

囊性纤维变性。A080577号,A066633号,A322761型,A322763型.

关键词

非n,标签,,基础

作者

N.J.A.斯隆2018年12月30日

扩展

更多术语来自阿洛伊斯·海因茨2018年12月30日

状态

经核准的

A322763型 按行读取的不规则三角形:要获得第n行,按如下顺序对n进行分区A080577号,在每个分区中,将k的每个第j次出现更改为j;使用未压缩的符号,如中所示A080577号. +20
2
1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 3, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 3, 1, 2, 3, 4, 5, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 3, 1, 2, 3, 1, 2, 1, 2, 1, 1, 2, 3, 4, 1, 2, 3, 4, 5, 6, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 3, 4, 1, 2, 3, 1, 1, 2, 1, 2, 3, 1, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, 7 (列表;图表;参考;;历史;文本;内部格式)
抵消

1,4

评论

压缩形式似乎更容易理解。这是A322762型但对于每个分区,在它被转换后,写为它的各个部分的字符串。

参考文献

D.E.Knuth,《计算机编程的艺术》,第4A卷,第7.2.1.5节,问题73,第415、761页。

链接

阿洛伊斯·海因茨,行n=1..24,扁平

例子

压缩形式(参见A322762型)三角形开始:

1,

1, 12,

1, 11, 123,

1, 11, 12, 112, 1234,

1, 11, 11, 112, 121, 1123, 12345,

1, 11, 11, 112, 12, 111, 1123, 123, 1212, 11234, 123456,

...

例如,6个分区中的11个分区是:

6, 51, 42, 411, 33, 321, 3111, 222, 2211, 21111, 111111,

并应用我们得到的转换:

1, 11, 11, 112, 12, 111, 1123, 123, 1212, 11234, 123456.

在未压缩符号中,三角形开始于:

{1},

{1}, {1,2},

{1}, {1,1}, {1,2,3},

{1}, {1,1}, {1,2}, {1,1,2}, {1,2,3,4},

{1}, {1,1}, {1,1}, {1,1,2}, {1,2,1}, {1,1,2,3}, {1,2,3,4,5},

...

MAPLE公司

b: =(n,i)->`如果`(n=0或i=1,[[$1..n]],[(t->

seq(映射(x->[$1..(t+1-j),x[]],b(n-i*(t+1-j))

,i-1))[],j=1..t))(iquo(n,i)),b(n,i-1,[]]):

T: =n->map(x->x[],b(n$2))[]:

seq(T(n),n=1..10)#阿洛伊斯·海因茨2018年12月30日

交叉参考

囊性纤维变性。A080577号,A066633号,A322761型,A322763型.

关键词

非n,标签,基础

作者

N.J.A.斯隆2018年12月30日

扩展

更多术语来自阿洛伊斯·海因茨2018年12月30日

状态

经核准的

A261209型 n的分区在排序中的第一个差异A080577号. +20
1
1, 2, 0, 1, 3, 1, 1, 0, 0, 1, 4, 2, 1, 0, 2, 1, 0, 1, 0, 0, 0, 1, 5, 3, 1, 1, 2, 2, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 6, 4, 1, 2, 2, 3, 0, 1, 0, 3, 1, 1, 1, 2, 0, 0, 1, 0, 0, 2, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1 (列表;图表;参考;;历史;文本;内部格式)
抵消

1,2

链接

n=1..77时的n,a(n)表。

例子

对于n=6:

[6]

[4, 1]

[2, 2]

[3, 0, 1]

[0, 3]

[1, 1, 1]

[2, 0, 0, 1]

[0, 0, 2]

[0, 1, 0, 1]

[1, 0, 0, 0, 1]

[0, 0, 0, 0, 0, 1]

黄体脂酮素

(鼠尾草)

定义A261209型(n) :

δ=λp:[p[i]-p[i+1](对于(0..len(p)-2)中的i)]+[p[-1]]如果p else[]

return[分区(n)中p的增量(p)]

[A261209型(n) 对于(1..6)中的n

交叉参考

囊性纤维变性。A080577号.

关键词

非n,标签

作者

彼得·卢什尼2015年8月12日

状态

经核准的

第页12 4 5 6 7 8 9 10 11

搜索在0.061秒内完成

查找|欢迎光临|维基|注册|音乐|地块2|演示|索引|浏览|更多|网络摄像头
贡献新序列。或评论|格式|样式表|变换|超级搜索|最近
OEIS社区|维护人OEIS基金会。

许可协议、使用条款、隐私政策。.

上次修改时间:美国东部标准时间2023年2月8日06:05。包含360134个序列。(在oeis4上运行。)