搜索: a057513-编号:a057513
|
|
|
|
0, 1, 3, 2, 7, 6, 8, 4, 5, 17, 16, 18, 14, 15, 20, 19, 21, 9, 10, 22, 11, 12, 13, 45, 44, 46, 42, 43, 48, 47, 49, 37, 38, 50, 39, 40, 41, 54, 53, 55, 51, 52, 57, 56, 58, 23, 24, 59, 25, 26, 27, 61, 60, 62, 28, 29, 63, 30, 31, 32, 64, 33, 34, 35, 36, 129, 128, 130, 126, 127
(列表;图表;参考;听;历史;文本;内部格式)
|
|
|
抵消
|
0,3
|
|
评论
|
在A057501号和A057502号,之间的循环(A014138号(n-1)+1)-th和(A014138号(n) )-第项划分A000108号(n) 对象的相应项编码A014486号进入之内A002995号平面树的(n+1)等价类,因此后一个序列也可以用下面给出的Maple过程RotHandshakesPermutationCycleCounts生成。
|
|
链接
|
n,a(n)的表,n=0..69。
自然数排列序列的索引项
A.卡图恩,异形性(包括计算该序列的完整Scheme程序)
|
|
MAPLE公司
|
地图(CatalanRankGlobal,地图(RotateHandshakesR,A014486号));
RotateHandshakesR:=n->pars2binexp(deepreverse(Rotatehandshakes P(deeprecverse(binexp2pars(n))));
deepreverse:=proc(a)如果0=nops(a)或list<>whattype(a),则(a)else[op(deepreversion(cdr(a))),deeprevere(a[1])];fi;结束;
与(组);计数周期:=b->(nops(convert(b,'disjcyc'))+(nops;
RotHandshakesPermutationCycleCounts:=proc(upto_n)局部u,n,a,r,b;a:=[];对于从0到upto_n的n,做b:=[];u:=(二项式(2*n,n)/(n+1));对于从0到u-1的r,做b:=[op(b),1+CatalanRank(n,RotateHandshakes(CatalanUnrank(n、r))];od;a:=[op(a),计数周期(b)];od;返回(a);结束;
#对于其他程序,请遵循A057501号.
|
|
黄体脂酮素
|
(在列表结构上实现此自同构的Scheme函数:)
(定义(robl!s)(let((ex-car(cars)))(set-car!s(cddrs))(set-cdr!(cdr s)ex-car)(swap!(cdrs))
(定义(交换!s)(let((ex-car(car s)))(set-car!s(cdr s))(set-cdr!s ex-car)s))
|
|
交叉参考
|
的反转A057501号和car/cdr翻转共轭A069774号,即。A057502号(n)=A057163号(A069774号(A057163号(n) )。另请参阅A057507号,A057510号,A057513号,A069771号,A069772号.
|
|
关键词
|
非n
|
|
作者
|
安蒂·卡图恩2000年9月3日
|
|
状态
|
经核准的
|
|
|
|
|
|
|
0, 1, 2, 3, 4, 6, 5, 7, 8, 9, 11, 14, 16, 19, 10, 15, 12, 17, 20, 13, 18, 21, 22, 23, 25, 28, 30, 33, 37, 39, 42, 44, 53, 51, 47, 56, 60, 24, 29, 38, 43, 52, 26, 40, 31, 45, 48, 34, 54, 57, 61, 27, 41, 32, 46, 55, 35, 49, 58, 62, 36, 50, 59, 63, 64, 65, 67, 70, 72, 75, 79, 81
(列表;图表;参考;听;历史;文本;内部格式)
|
|
|
|
|
|
|
|
0, 1, 2, 3, 4, 6, 5, 7, 8, 9, 14, 10, 16, 19, 11, 15, 12, 17, 20, 13, 18, 21, 22, 23, 37, 24, 42, 51, 25, 38, 26, 44, 53, 27, 47, 56, 60, 28, 39, 29, 43, 52, 30, 40, 31, 45, 54, 34, 46, 57, 61, 33, 41, 32, 48, 55, 35, 49, 58, 62, 36, 50, 59, 63, 64, 65, 107, 66, 121, 149, 67
(列表;图表;参考;听;历史;文本;内部格式)
|
|
|
|
|
|
|
|
1, 1, 2, 3, 5, 6, 10, 11, 18, 21, 34, 35, 68, 69, 137, 148, 316, 317, 759, 760, 1869, 1915, 4833, 4834, 12796, 12802, 34108, 34384, 92792, 92793, 254752, 254753, 703083, 704956, 1958210, 1958231, 5485330, 5485331, 15427026, 15440591, 43618394, 43618395, 123807695, 123807696, 352561832, 352664217, 1007481494, 1007481495, 2887387009
(列表;图表;参考;听;历史;文本;内部格式)
|
|
|
|
|
|
|
|
0, 1, 2, 3, 4, 6, 5, 7, 8, 9, 14, 10, 16, 19, 11, 15, 12, 17, 18, 13, 20, 21, 22, 23, 37, 24, 42, 51, 25, 38, 26, 44, 47, 27, 53, 56, 60, 28, 39, 29, 43, 52, 30, 40, 31, 45, 46, 32, 48, 49, 50, 33, 41, 34, 54, 55, 35, 57, 58, 59, 36, 61, 62, 63, 64, 65, 107, 66, 121, 149, 67
(列表;图表;参考;听;历史;文本;内部格式)
|
|
|
|
|
|
|
|
1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 7, 4, 1, 1, 1, 22, 11, 3, 1, 1, 1, 66, 31, 7, 2, 1, 1, 1, 217, 96, 22, 4, 3, 1, 1, 1, 715, 305, 66, 11, 7, 2, 1, 1, 1, 2438, 1007, 217, 30, 22, 4, 2, 2, 1, 1, 8398, 3389, 715, 93, 66, 11, 3, 5, 1, 1, 1, 29414, 11636, 2438, 292, 217, 30, 6, 14, 2, 2, 1, 1
(列表;桌子;图表;参考;听;历史;文本;内部格式)
|
|
|
|
|
|
|
|
0, 1, 2, 3, 4, 5, 7, 6, 8, 9, 10, 12, 11, 13, 17, 18, 16, 14, 15, 21, 19, 20, 22, 23, 24, 26, 25, 27, 31, 32, 30, 28, 29, 35, 33, 34, 36, 45, 46, 49, 48, 50, 44, 47, 42, 37, 38, 43, 40, 39, 41, 58, 59, 56, 51, 52, 57, 53, 54, 55, 63, 60, 61, 62, 64, 65, 66, 68, 67, 69
(列表;图表;参考;听;历史;文本;内部格式)
|
|
|
|
|
|
|
|
0, 1, 2, 3, 4, 5, 7, 6, 8, 9, 10, 12, 11, 13, 17, 18, 16, 14, 15, 20, 21, 19, 22, 23, 24, 26, 25, 27, 31, 32, 30, 28, 29, 34, 35, 33, 36, 45, 46, 49, 48, 50, 44, 47, 42, 37, 38, 43, 40, 39, 41, 54, 55, 57, 58, 59, 53, 56, 51, 52, 61, 62, 63, 60, 64, 65, 66, 68, 67, 69
(列表;图表;参考;听;历史;文本;内部格式)
|
|
|
|
|
|
|
|
0, 1, 2, 3, 4, 5, 7, 6, 8, 9, 10, 12, 11, 13, 17, 18, 16, 14, 15, 20, 21, 19, 22, 23, 24, 26, 25, 27, 31, 32, 30, 28, 29, 34, 35, 33, 36, 45, 46, 48, 49, 50, 44, 47, 42, 37, 38, 43, 39, 40, 41, 54, 55, 57, 58, 59, 53, 56, 51, 52, 61, 62, 63, 60, 64, 65, 66, 68, 67, 69
(列表;图表;参考;听;历史;文本;内部格式)
|
|
|
|
|
|
A038775号
|
| a(n)是将深度第一的平面种植二叉树的森林(n)转换为宽度第一表示的置换的循环数。 |
|
+10 4
|
|
|
1, 2, 3, 6, 10, 12, 17, 26, 34, 50, 56, 68, 82, 94, 113
(列表;图表;参考;听;历史;文本;内部格式)
|
|
|
|
搜索在0.007秒内完成
|