登录
OEIS由OEIS基金会的许多慷慨捐赠者.

 

标志
提示
(来自的问候整数序列在线百科全书!)
搜索: a048487-编号:a048477
显示找到的13个结果中的1-10个。 第页12
    排序:关联|参考文献||被改进的|创建     格式:长的|短的|数据
A250656型 T(n,k)=(n+1)X(k+1)0..1阵列的数量,其中X(i,j)-X +10
11
9, 16, 19, 25, 34, 39, 36, 53, 70, 79, 49, 76, 109, 142, 159, 64, 103, 156, 221, 286, 319, 81, 134, 211, 316, 445, 574, 639, 100, 169, 274, 427, 636, 893, 1150, 1279, 121, 208, 345, 554, 859, 1276, 1789, 2302, 2559, 144, 251, 424, 697, 1114, 1723, 2556, 3581 (列表;桌子;图表;参考;;历史;文本;内部格式)
抵消

1,1

评论

表格开始

....9...16....25....36....49....64....81...100...121...144...169....196....225

...19...34....53....76...103...134...169...208...251...298...349....404....463

...39...70...109...156...211...274...345...424...511...606...709....820....939

...79..142...221...316...427...554...697...856..1031..1222..1429...1652...1891

..159..286...445...636...859..1114..1401..1720..2071..2454..2869...3316...3795

..319..574...893..1276..1723..2234..2809..3448..4151..4918..5749...6644...7603

..639.1150..1789..2556..3451..4474..5625..6904..8311..9846.11509..13300..15219

.1279.2302..3581..5116..6907..8954.11257.13816.16631.19702.23029..26612..30451

.2559.4606..7165.10236.13819.17914.22521.27640.33271.39414.46069..53236..60915

.5119.9214.14333.20476.27643.35834.45049.55288.66551.78838.92149.106484.121843

链接

R.H.哈丁,n=1..880时的n,a(n)表

配方奶粉

经验:T(n,k)=2^(n-1)*k^2+(5*2^(n-1)-1)*k+2^(n+1)

k列的经验值:

k=1:a(n)=3*a(n-1)-2*a(n-2);同时a(n)=2^(n-1)+(5*2^(n-1)-1)+2^(n+1)

k=2:a(n)=3*a(n-1)-2*a(n-2);同时a(n)=2^(n-1)*4+(5*2^(n-1)-1)*2+2^(n+1)

k=3:a(n)=3*a(n-1)-2*a(n-2);同时a(n)=2^(n-1)*9+(5*2^(n-1)-1)*3+2^(n+1)

k=4:a(n)=3*a(n-1)-2*a(n-2);同时a(n)=2^(n-1)*16+(5*2^(n-1)-1)*4+2^(n+1)

k=5:a(n)=3*a(n-1)-2*a(n-2);同时a(n)=2^(n-1)*25+(5*2^(n-1)-1)*5+2^(n+1)

k=6:a(n)=3*a(n-1)-2*a(n-2);同时a(n)=2^(n-1)*36+(5*2^(n-1)-1)*6+2^(n+1)

k=7:a(n)=3*a(n-1)-2*a(n-2);同时a(n)=2^(n-1)*49+(5*2^(n-1)-1)*7+2^(n+1)

第n行的经验值:

n=1:a(n)=1*n^2+4*n+4

n=2:a(n)=2*n^2+9*n+8

n=3:a(n)=4*n^2+19*n+16

n=4:a(n)=8*n^2+39*n+32

n=5:a(n)=16*n^2+79*n+64

n=6:a(n)=32*n^2+159*n+128

n=7:a(n)=64*n^2+319*n+256

例子

n=4k=4的一些解

..1..1..0..1..1....0..0..0..0..0....0..0..0..0..0....1..1..1..0..0

..0..0..0..1..1....1..1..1..1..1....1..1..1..1..1....0..0..0..0..0

..0..0..0..1..1....1..1..1..1..1....0..0..0..0..0....0..0..0..0..0

..0..0..0..1..1....0..0..0..0..0....1..1..1..1..1....1..1..1..1..1

..0..0..0..1..1....0..1..1..1..1....1..1..1..1..1....0..0..0..1..1

交叉参考

第1列是A052549号(n+1)

第2列为A176449号

第3列为A156127号(n+1)

第4列是A048487号(n+2)

第1行是A000290型(n+2)

第2行是A168244号(n+3)

关键词

非n,

作者

R.H.哈丁2014年11月26日

状态

经核准的

A048483号 反对偶读取数组:T(k,n)=(k+1)2^n-k。 +10
9
1, 2, 1, 4, 3, 1, 8, 7, 4, 1, 16, 15, 10, 5, 1, 32, 31, 22, 13, 6, 1, 64, 63, 46, 29, 16, 7, 1, 128, 127, 94, 61, 36, 19, 8, 1, 256, 255, 190, 125, 76, 43, 22, 9, 1, 512, 511, 382, 253, 156, 91, 50, 25, 10, 1, 1024, 1023, 766, 509, 316, 187 (列表;桌子;图表;参考;;历史;文本;内部格式)
抵消

0,2

评论

第n个差值(T(k,n),T(k、n-1),。。。,T(k,0))是k+1,对于n=1,2,3,。。。;k=0,1,2,。。。

链接

n,a(n)的表,n=0..60。

配方奶粉

G.f.:(1-x+kx)/[(1-x)(1-2x)]。例如:(k+1)*exp(2x)-k*exp(x)。

重复次数:T(k,n)=2T(k、n-1)+k=T(k-1,n)+2^n-1,T(k)=1。

例子

1 2 4 8 16 32 ...

1 3 7 15 31 63 ...

1 4 10 22 46 94 ...

1 5 13 29 61 125 ...

1 6 16 36 76 156 ...

交叉参考

行是A000079号(k=0),A000225号(k=1),A033484号(k=2),A036563号(k=3),A048487号(k=4),A048488号(k=5),A048489号(k=6),A048490号(k=7),A048491号(k=8)。

主对角线为A048493号.参见。A048494号.

关键词

非n,

作者

克拉克·金伯利

扩展

编辑人拉尔夫·斯蒂芬2004年2月5日

状态

经核准的

A134636号 由帕斯卡规则形成的三角形,给定边界=2n+1。 +10
7
1, 3, 3, 5, 6, 5, 7, 11, 11, 7, 9, 18, 22, 18, 9, 11, 27, 40, 40, 27, 11, 13, 38, 67, 80, 67, 38, 13, 15, 51, 105, 147, 147, 105, 51, 15, 17, 66, 156, 252, 294, 252, 156, 66, 17, 19, 83, 222, 408, 546, 546, 408, 222, 83, 19, 21, 102, 305, 630, 954, 1092, 954, 630, 305, 102, 21 (列表;桌子;图表;参考;;历史;文本;内部格式)
抵消

0,2

评论

行总和=A048487号: (1, 6, 16, 36, 76, 156, ...).

链接

莱因哈德·祖姆凯勒(Reinhard Zumkeller),三角形n=0..120行,展平

与Pascal三角形相关的三角形和数组的索引项

配方奶粉

三角形,给定边界=(1,3,5,7,9,…);应用帕斯卡法则T(n,k)=T(n-1,k)P T(n-1,k-1)。

T(n,k)=A051601号(n,k)+A051597号(n,k);T(n,k)模块2=A047999号(n,k)-莱因哈德·祖姆凯勒2012年11月23日

类帕斯卡三角形任意左右边界的闭合公式A228196型. -鲍里斯·普蒂夫斯基2013年8月19日

例子

三角形的前几行:

1;

3, 3;

5, 6, 5;

7, 11, 11, 7;

9, 18, 22, 18, 9;

11, 27, 40, 40, 27, 11;

13, 38, 67, 80, 67, 38, 13;

...

MAPLE公司

T: =proc(n,k)选项记忆;

`如果`(k<0或k>n,0,

`如果`(k=0或k=n,2*n+1,

T(n-1,k-1)+T(n-1,k))

结束时间:

seq(seq(T(n,k),k=0..n),n=0..14)#阿洛伊斯·海因茨2013年5月26日

数学

NestList[Append[Prepend[Map[Apply[Plus,#]&,Partition[#,2,1]],#[[1]]+2],#[1]]+2]&,{1},10]//网格(*杰弗里·克雷策2013年5月26日*)

T[n_,k_]:=二项式[n,k-1]+二项式[n,k]+2二项式(n,k+1)+二项型(n,n-k+1);

表[T[n,k],{n,0,14},{k,0,n}]//展平(*Jean-François Alcover公司2021年3月7日*)

黄体脂酮素

(哈斯克尔)

a134636 n k=a134636_tabl!!不!!k个

a134636_row n=a134636 _ tabl!!n个

a134636_tabl=迭代(\row->zipWith(+)([2]++行)(row++[2]))[1]

--莱因哈德·祖姆凯勒2012年11月23日

交叉参考

囊性纤维变性。A007318号,A048487号,A051601号,A051597号.

关键词

非n,

作者

加里·亚当森2007年11月4日

扩展

偏移更改者莱因哈德·祖姆凯勒2012年11月23日

状态

经核准的

A119726号 按行读取的三角形数组:T(n,1)=T(n、n)=1,T(n和k)=4*T(n-1,k-1)+2*T(n-1,k)。 +10
6
1, 1, 1, 1, 6, 1, 1, 16, 26, 1, 1, 36, 116, 106, 1, 1, 76, 376, 676, 426, 1, 1, 156, 1056, 2856, 3556, 1706, 1, 1, 316, 2736, 9936, 18536, 17636, 6826, 1, 1, 636, 6736, 30816, 76816, 109416, 84196, 27306, 1, 1, 1276, 16016, 88576, 276896, 526096, 606056, 391396, 109226, 1 (列表;桌子;图表;参考;;历史;文本;内部格式)
抵消

1,5

评论

第二列是A048487号.

第二对角线是A020989号.

参考文献

TERMESZET VILAGA XI.TERMESZET-TUDOMANY DIAKPALYAZAT 133.EVF.6.SZ.2002年6月。Vegh Lea(和Vegh Erika):“Pascal-tipusu haromszogek”http://www.kfki.hu/chemonet/TermVil/tv2002/tv0206/tartalom.html

链接

G.C.格鲁贝尔,行n=三角形的1..100,展平

例子

三角形开头为:

1;

1, 1;

1, 6, 1;

1, 16, 26, 1;

1, 36, 116, 106, 1;

1, 76, 376, 676, 426, 1;

1, 156, 1056, 2856, 3556, 1706, 1;

1, 316, 2736, 9936, 18536, 17636, 6826, 1;

1, 636, 6736, 30816, 76816, 109416, 84196, 27306, 1;

1, 1276, 16016, 88576, 276896, 526096, 606056, 391396, 109226, 1;

MAPLE公司

T: =proc(n,k)选项记忆;

如果k=1和k=n,则为1

否则4*T(n-1,k-1)+2*T(n-1,k)

fi(菲涅耳)

结束:seq(seq(T(n,k),k=1..n),n=1..12)#G.C.格鲁贝尔2019年11月18日

数学

T[n_,k_]:=T[n,k]=如果[k==1|k==n,1,4*T[n-1,k-1]+2*T[n-1,k]];表[T[n,k],{n,10},{k,n}]//扁平(*G.C.格鲁贝尔2019年11月18日*)

黄体脂酮素

(PARI)T(n,k)=如果(k==1||k==n,1,4*T(n-1,k-1)+2*T(n-1,k));

(岩浆)

函数T(n,k)

如果k eq 1或k eq n,则返回1;

否则返回4*T(n-1,k-1)+2*T(n-1,k);

结束条件:;

返回T;

端函数;

[T(n,k):[1..n]中的k,[1..12]]中的n//G.C.格鲁贝尔2019年11月18日

(鼠尾草)

@缓存函数

定义T(n,k):

如果(k==1或k==n):返回1

else:返回4*T(n-1,k-1)+2*T(n-1,k)

[T(n,k)代表k in(1..n)]代表n in(1..12)]#G.C.格鲁贝尔2019年11月18日

交叉参考

囊性纤维变性。A007318号,A020989号,A048483号,A048487号,A119725号,A119727号,A123208号.

关键词

容易的,非n,

作者

零入侵拉霍斯2006年6月14日

扩展

编辑人唐·雷布尔2006年7月24日

状态

经核准的

A123208号 从1开始,然后交替添加2或两倍。 +10
6
1, 3, 6, 8, 16, 18, 36, 38, 76, 78, 156, 158, 316, 318, 636, 638, 1276, 1278, 2556, 2558, 5116, 5118, 10236, 10238, 20476, 20478, 40956, 40958, 81916, 81918, 163836, 163838, 327676, 327678, 655356, 655358, 1310716, 1310718, 2621436, 2621438 (列表;图表;参考;;历史;文本;内部格式)
抵消

0,2

链接

文森佐·利班迪,n=0..1000时的n,a(n)表

常系数线性递归的索引项,签名(0,3,0,-2)。

配方奶粉

a(2n)=5*2^n-4;a(2n+1)=5*2^n-2(n>=0)-Emeric Deutsch公司2006年10月10日

a(n+1)=(1+(-1)^n)*(a(n)+2)/2+-保罗·拉瓦2008年11月19日

a(n)=3*a(n-2)-2*a(n-4)-科林·巴克2012年9月10日

通用格式:(1+3*x+3*x^2-x^3)/((1-x)*(1+x)x(1-2*x^2))-科林·巴克2012年9月10日

a(2n)=A048487号(n) ;a(2n+1)=A051633号(n) ●●●●-菲利普·德尔汉姆2013年4月15日

例子

1, 1+2=3, 3*2=6, 6+2=8, 8*2=16, ...

MAPLE公司

a: =proc(n),如果n mod 2=0,则为5*2^(n/2)-4,否则为5*2 ^((n-1)/2)-2 fi结束:seq(a(n)、n=0..45)#Emeric Deutsch公司2006年10月10日

数学

nxt[{a,b}]:={b+2,2(b+2)};Rest[Flatten[NestList[nxt,{1,1},20]](*或*)LinearRecurrence[{0,3,0,-2},{1、3、6、8},40](*哈维·P·戴尔2012年10月10日*)

系数列表[级数[(1+3x+3x^2-x^3)/((1-x)(1+x)(1-2 x^2)),{x,0,40}],x](*文森佐·利班迪2013年6月25日*)

黄体脂酮素

(岩浆)m:=50;R<x>:=PowerSeriesRing(整数(),m);系数(R!((1+3*x+3*x^2-x^3)/((1-x^2)*(1-2*x^2//文森佐·利班迪2013年6月25日

关键词

容易的,非n

作者

菲利普·德尔汉姆2006年10月4日

扩展

更多术语来自Emeric Deutsch公司2006年10月10日

状态

经核准的

A131113号 T(n,k)=5*二项式(n,k)-4*I(n,k-),其中I是单位矩阵;行读取的三角形T(n>=0和0<=k<=n)。 +10
6
1, 5, 1, 5, 10, 1, 5, 15, 15, 1, 5, 20, 30, 20, 1, 5, 25, 50, 50, 25, 1, 5, 30, 75, 100, 75, 30, 1, 5, 35, 105, 175, 175, 105, 35, 1, 5, 40, 140, 280, 350, 280, 140, 40, 1, 5, 45, 180, 420, 630, 630, 420, 180, 45, 1 (列表;桌子;图表;参考;;历史;文本;内部格式)
抵消

0,2

评论

行总和=A048487号: (1, 6, 16, 36, 76, 156, ...).

链接

G.C.格鲁贝尔,三角形的行数n=0..100,展平

配方奶粉

T(n,k)=5*A007318号(n,k)-4*I(n,k),其中A007318号=帕斯卡三角形,I=单位矩阵。

二元o.g.f.:和{n,k>=0}T(n,k)*x^n*y^k=(1+4*x-x*y)/(1-x*y-Petros Hadjicostas公司2021年2月20日

例子

三角形T(n,k)(行n>=0,列k=0..n)开始于:

1;

5, 1;

5, 10, 1;

5, 15, 15, 1;

5, 20, 30, 20, 1;

5, 25, 50, 50, 25, 1;

5, 30, 75, 100, 75, 30, 1;

...

MAPLE公司

seq(seq(`if`(k=n,1,5*二项式(n,k)),k=0..n),n=0..10)#G.C.格鲁贝尔2019年11月18日

数学

表[如果[k==n,1,5*二项式[n,k]],{n,0,10},{k,0,n}]//展平(*G.C.格鲁贝尔2019年11月18日*)

黄体脂酮素

(PARI)T(n,k)=如果(k==n,1,5*二项式(n,k))\\G.C.格鲁贝尔2019年11月18日

(岩浆)[k eq n选择1其他5*二项式(n,k):k in[0..n],n in[0..10]]//G.C.格鲁贝尔2019年11月18日

(鼠尾草)

定义T(n,k):

如果k==n:返回1

else:返回5*二项式(n,k)

[T(n,k)代表k in(0..n)]代表n in(0..10)]

#G.C.格鲁贝尔2019年11月18日

(间隙)

T: =函数(n,k)

如果k=n,则返回1;

否则返回5*二项式(n,k);

fi;结束;

平面(列表([0..10],n->List([0..n],k->T(n,k)))#G.C.格鲁贝尔2019年11月18日

交叉参考

囊性纤维变性。A007318号,A048487号,A131110号,A131112号,A131114号,A131115号.

关键词

非n,,容易的,较少的

作者

加里·亚当森2007年6月15日

状态

经核准的

A051633号 a(n)=5*2^n-2。 +10
5
3, 8, 18, 38, 78, 158, 318, 638, 1278, 2558, 5118, 10238, 20478, 40958, 81918, 163838, 327678, 655358, 1310718, 2621438, 5242878, 10485758, 20971518, 41943038, 83886078, 167772158, 335544318, 671088638, 1342177278, 2684354558 (列表;图表;参考;;历史;文本;内部格式)
抵消

0,1

链接

n,a(n)的表(n=0..29)。

常系数线性递归的索引项,签名(3,-2)。

配方奶粉

a(n)=A000079号(n) *5-2=A020714号(n) -2-奥马尔·波尔2008年12月23日

a(n)=2*(a(n-1)+1),a(0)=3-文森佐·利班迪2010年8月6日

a(n)=A123208号(2*n+1)=A048487号(n) +2个=A131051型(n+2)=A153894号(n) -1-菲利普·德尔汉姆2013年4月15日

例子

a(5)=5*2^4-2=80-2=78。

数学

线性递归[{3,-2},{3,8},30](*雷·钱德勒2020年7月18日*)

交叉参考

a(n)=A118654号(n,5)。

囊性纤维变性。A000079号,A020714号. -奥马尔·波尔2008年12月23日

关键词

容易的,非n

作者

Asher Auel(Asher.Auel(AT)reed.edu)

状态

经核准的

A270810型 (x-x^2+2*x^3+2*x^4)/(1-3*x+2*x*2)的展开。 +10
5
0, 1, 2, 6, 16, 36, 76, 156, 316, 636, 1276, 2556, 5116, 10236, 20476, 40956, 81916, 163836, 327676, 655356, 1310716, 2621436, 5242876, 10485756, 20971516, 41943036, 83886076, 167772156, 335544316, 671088636, 1342177276, 2684354556, 5368709116, 10737418236, 21474836476 (列表;图表;参考;;历史;文本;内部格式)
抵消

0,3

链接

科林·巴克,n=0..1000时的n,a(n)表

M.Diepenbroek、M.Maus、A.Stoll、,反向双重列表中的模式避免2015年预印本。见表3。

常系数线性递归的索引项,签名(3,-2)。

配方奶粉

通用格式:x*(1-x+2*x^2+2*x*3)/(1-x)*(1-2*x))。

当n>2时,a(n)=5*2^(n-2)-4-布鲁诺·贝塞利2016年4月8日

当n>4时,a(n)=3*a(n-1)-2*a(n-2)-科林·巴克2016年4月12日

发件人保罗·柯茨2019年9月23日:(开始)

a(n+1)=b(n+4)-b(n)其中b(n)=0,1,1,然后是A026646号.

当n>4时,a(n)=2*a(n-1)+4。(结束)

黄体脂酮素

(岩浆)[n le 2选择n else 5*2^(n-2)-4:n in[0..40]]//布鲁诺·贝塞利2016年4月8日

(PARI)concat(0,Vec(x*(1-x+2*x^2+2*x^3)/(1-x)*(1-2*x))+O(x^50))\\科林·巴克2016年4月12日

交叉参考

同意A048487号除了最初的条款。

囊性纤维变性。A002605号,A265106型,A265107型,A265278型.

囊性纤维变性。A026646号,A000225号.

关键词

非n,容易的

作者

N.J.A.斯隆2016年4月6日

状态

经核准的

A062001型 n-Stohr序列的反对偶表:T(n,k)是最小正整数,而不是从T(n,1)到T(n,k-1)的第n行中最多n个不同项的总和。 +10
1, 2, 1, 3, 2, 1, 4, 4, 2, 1, 5, 7, 4, 2, 1, 6, 10, 8, 4, 2, 1, 7, 13, 15, 8, 4, 2, 1, 8, 16, 22, 16, 8, 4, 2, 1, 9, 19, 29, 31, 16, 8, 4, 2, 1, 10, 22, 36, 46, 32, 16, 8, 4, 2, 1, 11, 25, 43, 61, 63, 32, 16, 8, 4, 2, 1, 12, 28, 50, 76, 94, 64, 32, 16, 8, 4, 2, 1, 13, 31, 57, 91, 125, 127, 64, 32, 16, 8, 4, 2, 1 (列表;桌子;图表;参考;;历史;文本;内部格式)
抵消

1,2

链接

G.C.格鲁贝尔,反对角线n=1..50,平坦

配方奶粉

如果k<=n+1,则A(n,k)=2^(k-1),而如果k>n+1,A(n、k)=(2^n-1)*(k-n)+1(数组)。

T(n,k)=A(k,n-k+1)(反对偶)。

T(2*n-1,n)=A000079号(n-1),n>=1。

T(2*n,n)=A000079号(n) ,n>=1。

T(2*n+1,n)=A000225号(n+1),n>=1。

T(2*n+2,n)=A033484号(n) ,n>=1。

T(2*n+3,n)=A036563号(n+3),n>=1。

T(2*n+4,n)=A048487号(n) ,n>=1。

发件人G.C.格鲁贝尔,2022年5月3日:(开始)

T(n,k)=(2^k-1)*(n-2*k+1)+1对于k<n/2,否则为2^(n-k)。

T(2*n+5,n)=A048488号(n) ,n>=1。

T(2*n+6,n)=A048489号(n) ,n>=1。

T(2*n+7,n)=A048490号(n) ,n>=1。

T(2*n+8,n)=A048491号(n) ,n>=1。

T(2*n+9,n)=A139634号(n) ,n>=1。

T(2*n+10,n)=A139635号(n) ,n>=1。

T(2*n+11,n)=A139697号(n) ,n>=1。(结束)

例子

数组开头为:

1, 2, 3, 4, 5, 6, 7, 8, 9, ...A000027号;

1, 2, 4, 7, 10, 13, 16, 19, 22, ...A033627号;

1, 2, 4, 8, 15, 22, 29, 36, 43, ...A026474号;

1, 2, 4, 8, 16, 31, 46, 61, 76, ...A051039号;

1, 2, 4, 8, 16, 32, 63, 94, 125, ...A051040型;

1, 2, 4, 8, 16, 32, 64, 127, 190, ... ;

1, 2, 4, 8, 16, 32, 64, 128, 255, ... ;

1, 2, 4, 8, 16, 32, 64, 128, 256, ... ;

1, 2, 4, 8, 16, 32, 64, 128, 256, ... ;

反对角线三角形的开头为:

1;

2, 1;

3, 2, 1;

4, 4, 2, 1;

5, 7, 4, 2, 1;

6, 10, 8, 4, 2, 1;

7, 13, 15, 8, 4, 2, 1;

8, 16, 22, 16, 8, 4, 2, 1;

9, 19, 29, 31, 16, 8, 4, 2, 1;

10, 22, 36, 46, 32, 16, 8, 4, 2, 1;

11, 25, 43, 61, 63, 32, 16, 8, 4, 2, 1;

12, 28, 50, 76, 94, 64, 32, 16, 8, 4, 2, 1;

13, 31, 57, 91, 125, 127, 64, 32, 16, 8, 4, 2, 1;

数学

T[n_,k_]:=如果[k<n/2,(2^k-1)*(n-2*k+1)+1,2^(n-k)];

表[T[n,k],{n,15},{k,n}]//扁平(*G.C.格鲁贝尔2022年5月3日*)

黄体脂酮素

(SageMath)

定义A062001型(n,k):

如果(k<n/2):返回(2^k-1)*(n-2*k+1)+1

else:返回2^(n-k)

压扁([[A062001型(n,k)对于k in(1..n)]对于n in(1..15)])#G.C.格鲁贝尔2022年5月3日

交叉参考

行包括A000027号,A033627号,A026474号,A051039号,A051040型.

对角线包括A000079号,A000225号,A033484号,A036563号,A048487号.

囊性纤维变性。A048488号,A048489号,A048490号,A048491号,A139634号,A139635号,A139697号.

A048483号可以看做这张桌子的一半。

关键词

非n,

作者

亨利·博托姆利2001年5月29日

状态

经核准的

A204205型 基于(0,1/5,1)平均数组的三角形。 +10
2
1, 1, 6, 1, 7, 16, 1, 8, 23, 36, 1, 9, 31, 59, 76, 1, 10, 40, 90, 135, 156, 1, 11, 50, 130, 225, 291, 316, 1, 12, 61, 180, 355, 516, 607, 636, 1, 13, 73, 241, 535, 871, 1123, 1243, 1276, 1, 14, 86, 314, 776, 1406, 1994, 2366, 2519, 2556, 1, 15, 100, 400 (列表;桌子;图表;参考;;历史;文本;内部格式)
抵消

1,3

评论

请参见A204201型用于讨论和指导其他平均阵列。

链接

n=1..59时的n,a(n)表。

配方奶粉

T(n,n)=A048487号(n-1)-菲利普·德尔汉姆2013年12月24日

T(n,k)=T(n-1,k)+3*T(n-l,k-1)-2*T(n-2,k-1-菲利普·德尔汉姆2013年12月24日

例子

前六行:

1

1...6

1...7...16

1...8...23...36

1...9...31...59...76

1...10..40...90...135...156

数学

a=0;r=1/5;b=1;

t[1,1]=r;

t[n,1]:=(a+t[n-1,1])/2;

t[n,n]:=(b+t[n-1,n-1])/2;

t[n,k]:=(t[n-1,k-1]+t[n-1,k])/2;

u[n_]:=表[t[n,k],{k,1,n}]

表[u[n],{n,1,5}](*平均数组*)

u=表[(1/2)(1/r)2^n*u[n],{n,1,12}];

表格形式[u](*A204205型三角形*)

压扁[u](*A204205型序列*)

交叉参考

囊性纤维变性。A204201型.

关键词

非n,

作者

克拉克·金伯利2012年1月12日

状态

经核准的

第页12

搜索在0.008秒内完成

查找|欢迎光临|维基|注册|音乐|地块2|演示|索引|浏览|更多|网络摄像头
贡献新序列。或评论|格式|样式表|变换|超级搜索|最近
OEIS社区|维护人OEIS基金会。

许可协议、使用条款、隐私政策。.

上次修改时间:2023年2月3日15:25 EST。包含360035个序列。(在oeis4上运行。)