显示找到的2个结果中的1-2个。
第页1
0, 1, 2, 3, 4, 7, 8, 9, 14, 43, 44, 64, 93, 94, 784, 1562, 1563, 1564, 1569, 1599, 3124, 9374
评论
通过10^10000(以5为基数的14307位数字和以6为基数的12851位数字)没有更多的术语。但是可以证明9374是序列的最后一项吗?
例子
a(1)=0=0_5=0_6
a(2)=1=1_5=1_6
a(3)=2=2_5=2_6
a(4)=3=3_5=3_6
a(5)=4=4_5=4_6
a(6)=7=12_5=11_6
a(7)=8=13_5=12_6
a(8)=9=14_5=13_6
a(9)=14=24 _5=22 _6
a(10)=43=133_5=111_6
a(11)=44=134_5=112_6
a(12)=64=224_5=144_6
a(13)=93=333_5=233_6
a(14)=94=334_5=234_6
a(15)=784=11114_5=3344_6
a(16)=1562=22222 _5=11122_6
a(17)=1563=22223_5=11123_6
a(18)=1564=22224_5=11124_6
a(19)=1569=22234_5=11133_6
a(20)=1599=22344_5=11223_6
a(21)=3124=44444_5=22244_6
a(22)=9374=24444_5=111222_6
0, 1, 2, 3, 4, 5, 8, 9, 10, 11, 16, 17, 57, 58, 59, 65, 89, 130, 131, 172, 173, 179, 1600, 1601, 3203
评论
在10^10000之间没有其他术语(即以6为基数的12851位数字和以7为基数的11833位数字)。但能证明3203是序列的最后一项吗?
例子
a(1)=0=0_6=0_7
a(2)=1=1_6=1_7
a(3)=2=2_6=2_7
a(4)=3=3_6=3_7
a(5)=4=4_6=4_7
a(6)=5=5_6=5_7
a(7)=8=12_6=11_7
a(8)=9=13_6=12_7
a(9)=10=14_6=13_7
a(10)=11=15_6=14_7
a(11)=16=24_6=22_7
a(12)=17=25_6=23_7
a(13)=57=133_6=111_7
a(14)=58=134_6=112_7
a(15)=59=135_6=113_7
a(16)=65=145_6=122_7
a(17)=89=225_6=155_7
a(18)=130=334_6=244_7
a(19)=131=335_6=245_7
a(20)=172=444_6=334_7
a(21)=173=445=335=7
a(22)=179=455_6=344_7
a(23)=1600=11224_6=4444_7
a(24)=1601=11225_6=4445_7
a(25)=3203=22455_6=12224_7
搜索在0.005秒内完成
|