登录
OEIS由OEIS基金会的许多慷慨捐赠者.

 

标志
提示
(来自的问候整数序列在线百科全书!)
A334192型 平方数组A(n,k),n>=0,k>=1,由反对偶读取:A(n、k)=exp(1/k)*Sum_{j>=0}(k*j+1)^n/(-k)^j*j!)。
1, 1, 0, 1, 0, -1, 1, 0, -2, -1, 1, 0, -3, -4, 2, 1, 0, -4, -9, 4, 9, 1, 0, -5, -16, 0, 64, 9, 1, 0, -6, -25, -16, 189, 248, -50, 1, 0, -7, -36, -50, 384, 1377, 48, -267, 1, 0, -8, -49, -108, 625, 4416, 4374, -6512, -413, 1, 0, -9, -64, -196, 864, 10625, 26368, -26001, -51200, 2180 (列表;桌子;图表;参考;;历史;文本;内部格式)
抵消
0,9
链接
配方奶粉
第k列的G.f:(1/(1-x))*Sum_{j>=0}(-x/(1-x))^j/Product_{i=1..j}(1-k*i*x/(1-x))。
k列的示例:exp(x+(1-exp(k*x))/k)。
例子
方形数组开始:
1, 1, 1, 1, 1, 1, ...
0, 0, 0, 0, 0, 0, ...
-1, -2, -3, -4, -5, -6, ...
-1, -4, -9, -16, -25, -36, ...
2, 4, 0, -16, -50, -108, ...
9, 64, 189, 384, 625, 864, ...
数学
表[函数[k,级数系数[1/(1-x)和[(-x/(1-x))^j/积[(1-kix/(1-x))),{i,1,j}],{j,0,n}],}x,0,n}][m-n+1],{m,0,10},{n,0,m}]//展平
表[函数[k,n!系列系数[Exp[x+(1-Exp[kx])/k],{x,0,n}][m-n+1],{m,0,10},{n,0,m}]//展平
交叉参考
囊性纤维变性。A309386型,A334165型,A334193型(对角线)。
关键词
签名,
作者
状态
经核准的

查找|欢迎光临|维基|注册|音乐|地块2|演示|索引|浏览|更多|网络摄像头
贡献新序列。或评论|格式|样式表|变换|超级搜索|最近
OEIS社区|维护人OEIS基金会。

许可协议、使用条款、隐私政策。.

上次修改时间:美国东部夏令时2023年6月4日17:32。包含363128个序列。(在oeis4上运行。)