|
|
A286781型 |
| 行读取的三角形T(n,k):公式部分中定义的多项式P_n(T)的系数。 |
|
18
|
|
|
1, 2, 1, 10, 9, 1, 74, 91, 23, 1, 706, 1063, 416, 46, 1, 8162, 14193, 7344, 1350, 80, 1, 110410, 213953, 134613, 34362, 3550, 127, 1, 1708394, 3602891, 2620379, 842751, 125195, 8085, 189, 1, 29752066, 67168527, 54636792, 20862684, 4009832, 382358, 16576, 268, 1, 576037442, 1375636129, 1223392968, 533394516, 124266346, 15653598, 1023340, 31356, 366,1
(列表;桌子;图表;参考;听;历史;文本;内部格式)
|
|
|
抵消
|
0,2
|
|
评论
|
T(n,k)是具有k个费曼环的费曼图的数量,在具有两体相互作用的费米子多体理论中,自能函数的零维微扰展开为n级(参见Molinari链接)。
|
|
链接
|
卢卡·莫利纳里,赫丁方程和费曼图的计数,arXiv:cond-mat/0401500[cond-mat.str-el],2005年。
|
|
配方奶粉
|
y(x;t)=Sum_{n>=0}P_n(t)*x^n满足y*(1-x*y)^2=(1+x*y+2*x^2*导数(y,x))*(1-x*y*(1-t)),y(0;t)=1,其中P_n。
|
|
例子
|
A(x;t)=1+(2+t)*x+(10+9*t+t^2)*x^2+(74+91*t+23*t^2+t^3)*x*3+。。。
三角形起点:
n\k[0][1][2][3][4][5][6][7][8]
[0] 1;
[1] 2, 1;
[2] 10、9、1;
[3] 74, 91, 23, 1;
[4] 706, 1063, 416, 46, 1;
[5] 8162, 14193, 7344, 1350, 80, 1;
[6] 110410, 213953, 134613, 34362, 3550, 127, 1;
[7] 1708394, 3602891, 2620379, 842751, 125195, 8085, 189, 1;
[8] 29752066, 67168527, 54636792, 20862684, 4009832, 382358, 16576, 268, 1;
[9] ...
|
|
数学
|
最大值=10;y0[x_,t]=1;y1[x_,t]=0;对于[n=1,n<=最大,n++,y1[x_,t_]=(1+x*y0[x,t]+2*x^2*D[y0[x,t],x])*(1-x*y0[x,t]*(1-t))/(1-x*y0[x-t])^2+O[x]^n//正常;y0[x_,t]=y1[x,t]];
行[n_]:=系数列表[系数[y0[x,t],x,n],t];
|
|
黄体脂酮素
|
(平价)
我的(x='x+O('x^N),y0=1+O(‘x^N’),y1=0,N=1);
而(n++,
y1=(1+x*y0+2*x^2*y0')*(1-x*y0*(1-t))/(1-x*y0)^2;
如果(y1==y0,break());y0=y1;);
年;
};
concat(应用(p->Vecrev(p),Vec(A286781型_ser(10)))
\\测试:y=A286781型_ser(50);y*(1-x*y)^2=(1+x*y+2*x^2*deriv(y,'x))*(1-x*y*(1-t))
|
|
交叉参考
|
|
|
关键词
|
|
|
作者
|
|
|
状态
|
已批准
|
|
|
|