登录
OEIS由
OEIS基金会的许多慷慨捐赠者
.
提示
(来自的问候
整数序列在线百科全书
!)
A236936型
在n X n正方形中放置k 9 X 9块瓷砖的方法在该正方形的所有对称操作下的等价类的数量T(n,k);
不规则三角形T(n,k),n>=9,0<=k<=floor(n/9)^2,按行读取。
9
1, 1, 1, 1, 1, 3, 1, 3, 1, 6, 1, 6, 1, 10, 1, 10, 1, 15, 1, 15, 30, 5, 1, 1, 21, 96, 74, 14, 1, 21, 221, 413, 174, 1, 28, 417, 1525, 1234, 1, 28, 705, 4290, 6124, 1, 36, 1107, 10269, 23259, 1, 36, 1638, 21630, 73204, 1, 45, 2334, 41790, 199436
(
列表
;
图表
;
参考
;
听
;
历史
;
文本
;
内部格式
)
抵消
9,6
链接
n=9..66时的n、a(n)表。
克里斯托弗·亨特·格里布尔,
C++程序
克里斯托弗·亨特·格里布尔,
示例图形
配方奶粉
看起来:
T(n,0)=1,n>=9
T(n,1)=(楼层(n-9)/2)+1)*(楼层((n-9”/2+2))/2,n>=9
T(c+2*9,2)=
A131474美元
(c+1)*(9-1)+
A000217号
(c+1)*地板(9^2/4)+
A014409号
(c+2),0<=c<9,c偶数
T(c+2*9,2)=
A131474号
(c+1)*(9-1)+
A000217号
(c+1)*楼层((9-1)(9-3)/4)+
A014409号
(c+2),0≤c<9,c奇数
T(c+2*9,3)=(c+1)(c+2)/2(2*
A002623号
(c-1)*地板((9-c-1)/2)+
A131941号
(c+1)*地板((9-c)/2)+S(c+1,3c+2,3),0≤c≤9,其中
S(c+1,3c+2,3)=
A054252号
(2,3),c=0
A236679号
(5.3),c=1
A236560型
(8.3),c=2
A236757号
(11.3),c=3
A236800型
(14.3),c=4
236829元
(17.3),c=5
A236865型
(20.3),c=6
A236915型
(23,3),c=7
236936英镑
(26,3),c=8
例子
T(n,k)的前17行是:
.\k 0 1 2 3 4
n个
9 1 1
10 1 1
11 1 3
12 1 3
13 1 6
14 1 6
15 1 10
16 1 10
17 1 15
18 1 15 30 5 1
19 1 21 96 74 14
20 1 21 221 413 174
21 1 28 417 1525 1234
22 1 28 705 4290 6124
23 1 36 1107 10269 23259
24 1 36 1638 21630 73204
25 1 45 2334 41790 199436
.
T(18,3)=5,因为在18 X 18正方形中放置3个9 X 9正方形瓷砖的方法的等价类的数量是5。
交叉参考
囊性纤维变性。
A054252号
,
A236679号
,
A236560型
,
236757英镑
,
A236800型
,
A236829号
,
A236865型
,
A236915型
,
A236939型
.
上下文中的顺序:
A238694型
A320221型
A236939型
*
A236915型
A236865型
A236829号
相邻序列:
A236933型
A236934型
A236935型
*
A236937型
A236938型
A236939型
关键词
标签
,
非n
作者
克里斯托弗·亨特·格里布尔
2014年2月1日
状态
经核准的