登录
OEIS由OEIS基金会的许多慷慨捐赠者.

 

标志
提示
(来自的问候整数序列在线百科全书!)
A215466号 x*的展开(1-4*x+x^2)/((x^2-7*x+1)*(x^2-3*x+1))。 12
0, 1, 6, 38, 252, 1705, 11628, 79547, 544824, 3733234, 25585230, 175356611, 1201893336, 8237850373, 56462937882, 387002396990, 2652553009008, 18180866487757, 124613506702404, 854113665498719, 5854182112700460 (列表;图表;参考;;历史;文本;内部格式)
抵消
0.3
评论
发件人彼得·巴拉,2019年8月5日:(开始)
设U(n;P,Q),其中P和Q是整数参数,表示第一类Lucas序列。那么,除去P=-1的情况,序列(U(n;P,1)+U(2*n;P,1))/(P+1)是一个具有o.g.f.x*(1-2*(P-1)*x+x^2)/((1-P*x+x2)*(1-(P^2-2)*x+x^2,))的四阶线性可除序列。这是P=3的情况。请参见A000027号(P=2),A165998号(P=-2)和A238536型(P=-3)。
更一般地说,序列U(n;P,1)+U(2*n;P、1)+…+U(k*n;P,1)是2*k阶线性可除序列。例如,请参见A273625型(P=3,k=3,然后用初始项1对序列进行归一化)。(结束)
链接
文森佐·利班迪,n=0..1000时的n,a(n)表
维基百科,卢卡斯数列
E.L.Roettger和H.C.Williams,四阶奇可分序列中素数的出现,国际期刊。,第24卷(2021年),第21.7.5条。
H.C.Williams和R.K.Guy,一些四阶线性可除序列,《国际数论》7(5)(2011)1255-1277。
H.C.Williams和R.K.Guy,4阶奇偶线性可除序列,INTEGERS,2015,#A33。
常系数线性递归的索引项,签名(10,-23,10,-1)。
配方奶粉
a(n)=L(n)*F(3n)/4如果n为偶数,=F(n)*L(3n=A000032号,F=A000045美元.
a(n)=3*A004187号(n) 第页,共4页+A001906号(n) /4。
a(n)=10*a(n-1)-23*a(n-2)+10*a(n3)-a(n-4),a(0)=0,a(1)=1,a(2)=6,a(3)=38-哈维·P·戴尔2015年11月2日
a(n)=(1/4)*(斐波那契(2*n)+斐波那奇(4*n))=(1/4)*(A001906号(n)+A033888号(n) )-彼得·巴拉2019年8月5日
例如:exp(5*x/2)*(cosh(x)+exp(x)*cosh(sqrt(5)*x))*sinh-斯特凡诺·斯佩齐亚2019年8月17日
对于Z中的所有n,a(n)=-a(-n)-迈克尔·索莫斯,2022年12月29日
MAPLE公司
A215466号:=进程(n)
如果类型为(n,“偶数”),则
A000032号(n) *组合[fibonacci](3*n)/4;
其他的
组合[fibonacci](n)*A000032号(3*n)/4;
结束条件:;
结束进程:
数学
系数列表[级数[x*(1-4*x+x^2)/((x^2-7*x+1)*(x^2-3*x+1,)),{x,0,40}],x](*文森佐·利班迪2012年12月23日*)
线性递归[{10,-23,10,-1},{0,1,6,38},30](*哈维·P·戴尔2015年11月2日*)
黄体脂酮素
(岩浆)I:=[0,1,6,38];[n le 4选择I[n]else 10*自我(n-1)-23*自我(n-2)+10*自我(n-3)-自我(n-4):[1..30]]中的n//文森佐·利班迪2012年12月23日
(Magma)/*根据定义:“/m:=20;R<x>:=PowerSeriesRing(Integers(),m);[0]cat系数(R!((1-4*x+x^2)/((x^2-7*x+1)*(x^2-3*x+1)))//布鲁诺·贝塞利2012年12月24日
(PARI)a(n)=([0,1,0,0;0,0,1,0;0,0,0,1;-1,10,-23,10]^n*[0;1;6;38])[1,1]\\查尔斯·格里特豪斯四世2015年11月13日
(PARI){a(n)=my(w=quadgen(5)^(2*n));imag(w^2+w)/4}/*迈克尔·索莫斯2022年12月29日*/
交叉参考
关键词
非n容易的
作者
R.J.马塔尔2012年8月11日
状态
经核准的

查找|欢迎光临|维基|注册|音乐|地块2|演示|索引|浏览|更多|网络摄像头
贡献新序列。或评论|格式|样式表|变换|超级搜索|最近
OEIS社区|维护人OEIS基金会。

许可协议、使用条款、隐私政策。.

上次修改时间:2023年11月28日11:06 EST。包含367413个序列。(在oeis4上运行。)