多项式约简:简介
...
我们从一个例子开始。假设p(x)是一个多项式,因此对于某些多项式t(x)和r(x),p(x)=(x^2)t(x。将x^2替换为x+1,得到(x+1)t(x)+r(x),对于某些u(x)和v(x)来说,是(x^2)u(x。以这种方式继续会得到0次或1次的固定多项式w(x)。如果p(x)=x^n,则w(x)=x*F(n)+F(n-1),其中F=A000045号斐波那契数列。
为了推广,为任意多项式g(x)的次数写d(g),并假设p,q,s是满足d(s)<d(q)的多项式。通过除法算法,存在唯一的多项式对t和r,使得p=q*t+r和d(r)<d(q)。将q替换为s,得到s*t+r,即某些u和v的q*u+v,其中d(v)<d(q)。以这种方式继续应用q->s,直到达到w,使得d(w)<d(q)。我们称w为p被q->s约化。
的系数(p被q->s减少)包括长度为d(q)-1的向量,因此多项式序列p(n,x)产生向量序列,例如上例中的(F(n),F(n-1))。我们对p(n,x)的各种选择的成分序列(例如F(n-1)和F(n))感兴趣。
以下是减少x^2->x+1的示例:
...
假设b=(b(0),b(1),…)是一个序列,设p(n,x)=b(0)+b(1)x+b(2)x^2++b(n)x^n。我们定义(序列b被q->s约简)为由(p(n,x)被q->s约简的)给出的向量,其分量按幂次排列,从0到d(q)-1。对于k=0,1,。。。,d(q)-1,我们得到了“k序列(序列b被q->s约化)”。继续这个例子,如果b是由b(k)=1给出的序列,如果k=n,b(k。
...
对于选定的序列b,以下是的0序列和1序列(b被x^2->x+1减少):
...
更多评论:
(1) 如果s(n,x)=(x^n减少q->s)和
p(x)=p(0)x^n+p(1)x^(n-1)++p(n)x ^0,然后
(p减少q->s)=p(0)s(n,x)+p(1)s(n-1,x)
+...+p(n-1)s(1,x)+p(n)s(0,x)。请参见A192744号.
(2) 对于任意多项式p(x),设p(x)=(p(x的约化)
q->s)。则P(r)=P(r)
q(x)-s(x)。特别地,如果q(x)=x^2和s(x)=x+1,
则P(r)=P(r),如果r=(1+sqrt(5))/2(黄金比率)或
r=(1平方(5))/2。