登录
OEIS基金会得到了OEIS用户的捐赠和西蒙斯基金会的资助。

 

标志


提示
(问候来自整数序列在线百科全书!)
A051339号 第一类广义斯特林数三角形。 10
1,-7,1,56,-15,1,-504,191,-24,1,5040,-2414,431,-34,1,-55440,31594,-7155,805,-45,1,665280,-434568,117454,-16815,1345,-57,1,-8648640,6314664,-1961470,336049,-34300,2086,-70,1,121080960,-97053936,33775244,-6666156,816249,-63504,3066,-84,1 (列表;桌子;图表;参考文献;;历史;文本;内部格式)
抵消

0,2个

评论

a(n,m)=^7P_n^m,用a(0,0):=1表示。一元行多项式s(n,x):=sum(a(n,m)*x^m,m=0..n),其中s(n,x)=积(x-(7+k),k=0..n-1),n>=1,s(0,x)=1满足s(n,x+y)=sum(二项式(n,k)*s(k,x)*S1(n-k,y),k=0..n),其中Stirling1多项式S1(n,x)=和(A008275号(n,m)*x^m,m=1..n)和S1(0,x)=1。在本影微积分中(见A048854号)对于(exp(7*t),exp(t)-1,s(n,x)多项式称为Sheffer。

链接

莱因哈德·祖姆凯勒,n=0..125行三角形,展平

D、 S.米特里诺维奇,M.S.米特里诺维奇,斯特林列名等级表贝格拉德大学。普比。罗特勒恩。法克。爵士。垫子。菲兹。77年(1962年)。

公式

a(n,m)=a(n-1,m-1)-(n+6)*a(n-1,m),n>=m>=0;a(n,m):=0,n<m;a(n,-1):=0,a(0,0)=1。

E、 (第m个有符号的三角形(m/m)!*(1+x)^7)。

三角形(有符号)=[-7,-1,-8,-2,-9,-3,-10,-4,-11,-5,…]增量A000035号;三角形(无符号)=[7,1,8,2,9,3,10,4,…]增量A000035号;其中DELTA是Deléham在A084938号.

如果我们定义f(n,i,a)=和(二项式(n,k)*斯特林1(n-k,i)*乘积(-a-j,j=0..k-1),k=0..n-i),那么T(n,i)=f(n,i,7),对于n=1,2,…;i=0…n[自米兰-扬吉奇,2008年12月21日]

例子

{1} ;{-7,1};{56,-15,1};{-504191,-24,1}。。。s(2,x)=56-15*x+x^2;S1(2,x)=-x+x^2(斯特林1)。

数学

a[n,m\u]:=Pochhammer[m+1,n-m]系列系数[Log[1+x]^m/(1+x)^7,{x,0,n}];

Table[a[n,m],{n,0,8},{m,0,n}]//展平(*让·弗朗索瓦·阿尔科弗2019年10月29日*)

黄体脂酮素

(哈斯克尔)

a051339 n k=a051339表!!n!!k

a051339行n=a051339表!!n

a051339_tabl=map fst$迭代(\(行,i)->

(zipWith(-)([0]++行)$map(*i)(行++[0]),i+1)([1],7)

--莱因哈德·祖姆凯勒2014年3月11日

交叉引用

第一个(m=0)列序列是A001730. 行和(有符号三角形):A001725号(n+5)*(-1)^n.行和(无符号三角形):A049388号(n) 一。

囊性纤维变性。A000035号 A084938号.

上下文顺序:A075502号 A052104号 A144450号*A134141 A237111 A281620

相邻序列:A051336号 A051337型 A051338号*A051340号 A051341号 A051342型

关键字

签名,容易的,

作者

狼牙

状态

经核准的

查找|欢迎光临|维基|登记|音乐|地块2|演示|索引|浏览|更多|网络摄像头
贡献新序列。或评论|格式|样式表|变换|超级搜索者|最近
OEIS社区|维护人OEIS基金公司。

许可协议,使用条款,隐私政策。.

上次修改日期:美国东部时间2020年7月11日15:58。包含335626个序列。(运行在oeis4上。)