登录
OEIS基金会得到了OEIS用户的捐赠和西蒙斯基金会的资助。

 

标志

请做一个捐赠让OEIS继续运行。我们现在已经56岁了。在过去的一年里,我们增加了10000个新序列,达到了近9000个引用(通常说“感谢OEI的发现”)。
其他方式捐赠

提示
(问候来自整数序列在线百科全书!)
A005196号 a(n)=和t*F(n,t),其中F(n,t)(见A095133号)是具有n个(未标记)节点且正好是t个树的林数。
(原M2567)
6
1、3、6、13、24、49、93、190、381、803、1703、3755、8401、19338、45275、108229、262604、647083、1613941、4072198、10374138、26663390、69056163、180098668、472604314、1247159936、3307845730、8814122981、23585720703、63359160443、170815541708、462049250165 (列表;图表;参考文献;;历史;文本;内部格式)
抵消

1,2

参考文献

N、 J.A.Sloane和Simon Plouffe,《整数序列百科全书》,学术出版社,1995年(包括该序列)。

链接

阿洛伊斯·P·海因茨,n=1..300时的n,a(n)表

E、 M.Palmer和A.J.Schwenk,关于随机森林中的树数,J.科布林。理论,B 27(1979),109-121。[第17条输入错误]

埃里克·韦斯坦的数学世界,森林

公式

要得到a(n),取三角形的n行A095133号,将连续项乘以1,2,3。。。和总和。E、 例如,a(4)=1*2+2*2+3*1+4*1=13。

枫木

带(数字):

b: =proc(n)选项记住;局部d,j;`if`(n<=1,n,

(加(加(d*b(d),d=除数(j))*b(n-j),j=1..n-1))/(n-1))

结束:

t: =proc(n)选项记住;local k;`if`(n=0,1,

b(n)-(加(b(k)*b(n-k),k=0..n)—`if`(irem(n,2)=0,b(n/2),0))/2)

结束:

g: =proc(n,i,p)选项记住;`if`(p>n,0,`if`(n=0,1,

`如果`(min(i,p)<1,0,加上(g(n-i*j,i-1,p-j)*

二项式(t(i)+j-1,j),j=0..min(n/i,p)))))

结束:

a: =n->加(k*g(n,n,k),k=1..n):

顺序(a(n),n=1..40)#海因茨2012年8月20日

数学

nn=30;s[n[n UU,k U U]:=s[n n,k]=a[n+1-k]+如果[n<2k,0,0,s[n-k,k]]];a[1]=1;a[n[n U U]:=a[n n[n[a[i]s[n-1,i]i,{i,1,n-1}]//(n-1 1);ft=表[a[i]-Sum[a[j]总和[a[j]a[i-j],{j,1,1,i/2}]+如果[ODDJ[i[i]O[i]O[i]0,0,a a a[a[i[i[i[i[O[O[O[[i/2](a[i/2]+1)/2],{i,1,nn}];系数列表[D系列[产品[1/(1-y x^i)^ft[[i]],{i,1,nn}],y]/.y->1,{x,0,20}],x](*杰弗里·克里特2012年10月13日,代码由罗伯特A.罗素在里面A000055型*)

交叉引用

囊性纤维变性。A000055型,A005195号,A095133号.

上下文顺序:A000219号 邮编:A191782 A027999号*A320286型 A032287号 邮编:A199403

相邻序列:A005193号 A005194号 A005195号*A005197号 A005198号 A005199号

关键字

,美好的

作者

N、 斯隆

扩展

更多条款来自弗拉德塔·乔沃维奇2004年6月3日

定义澄清人N、 斯隆2012年5月29日

状态

经核准的

查找|欢迎光临|维基|登记|音乐|地块2|演示|索引|浏览|更多|网络摄像头
贡献新序列。或评论|格式|样式表|变换|超级搜索者|最近
OEIS社区|维护人OEIS基金公司。

许可协议,使用条款,隐私政策。.

上次修改日期:美国东部时间2020年12月2日14:26。包含338877个序列。(运行在oeis4上。)