类似的序列,初始0被1替换,即A094258号,由递归a(2)=1,a(n)=a(n-1)*(n-1)^2/(n-2)定义Andrey Ryshevich(Ryshevich(AT)notes.idlab.net),2002年5月21日
E_1(x)+gamma+log(x)幂级数展开中的分母,x>0-迈克尔·索莫斯2002年12月11日
如果任意长度k的所有排列都是按字典顺序排列的,那么这个序列中的第n项(n≤k)给出了排列的索引,该排列将最后n个元素向右旋转一个位置。例如,有4个项目的24个排列。按字典顺序,它们是(0,1,2,3),(0,1,1,2),(0,2,1,3)。。。(3,2,0,1), (3,2,1,0). 置换0是(0,1,2,3),它旋转最后一个元素1,即不做任何更改。置换1是(0,1,3,2),它旋转最后两个元素。置换4是(0,3,1,2),它旋转最后3个元素。置换18是(3,0,1,2),它旋转最后4个元素。相同的数字适用于任何长度的排列Henry H.Rich(glasss(AT)bellsouth.net),2003年9月27日
a(n)=[1,4,18,96,…]的斯特林变换是A069321号(n) =[1,5,31233,…]。
a(n)=[0,1,4,18,…]的部分和为A033312号(n+1)=[0,1,5,23,…]。
的二项式变换A000166号(n+1)=[0,1,2,9,…]是a(n)=[0,1,4,18,…]。
的二项式变换A000255号(n+1)=[1,3,11,53,…]是a(n+1,=[1,4,18,96,…]。
a(n)=[0,1,4,18,…]的二项式变换为A093964号(n) =[0,1,6,33…]。
的部分总和A001564号(n) =[1,3,4,14,…]是a(n+1)=[1,4,18,96,…]。
(结束)
[n+1]的所有排列中的小下降数。置换(x_1,x_2,…,x_n)中的小下降是位置i,使得x_i-x_(i+1)=1。例如:a(2)=4,因为在{1,2,3}的置换123、13\2、2\13、231、312、3\2\1中有4个小下降(用\表示)。a(n)=和{k=0..n-1}k*A123513型(n,k)-Emeric Deutsch公司2006年10月2日
等效地,在大卫、肯德尔和巴顿的记法中,第263页,这是n+1个字母的所有排列中连续递增对的总数(参见。A010027号). -N.J.A.斯隆2014年4月12日
a(n)也是[n]的所有排列中从左到右最大值的位置之和。例如:a(3)=18,因为[3]的置换123132213231312和321中的左至右最大值的位置分别为123、12、13、12、1和1,并且1+2+3+1+2+1+3+1+2+1=18-Emeric Deutsch公司2008年9月21日
用另一个1:(1,1,4,18,…)作为系列的前言;然后下一项=后者的点积,其中“n发生n次”。例如:96=(1,1,4,8)点(4,4,4)=(4+4+16+72)-加里·亚当森2009年4月17日
a(n)也是n+1节点上星图S_{n+1}的最小(n-)可区别标记数-埃里克·韦斯特因2014年10月14日
a(n-1)是没有长度为n的循环的n个元素上的排列数-丹尼斯·沃尔什2017年10月2日
以n+1为基数的泛数字的数目,因此每个数字只出现一次。例如,有一个(9)=9*9!=3265920以10为基数的泛数字(A050278美元). -阿米拉姆·埃尔达尔2020年4月13日