登录
OEIS由OEIS基金会的许多慷慨捐赠者.

 

标志
提示
(来自的问候整数序列在线百科全书!)
A000219号 n个平面分区(或平面分区)的数量。
(原名M2566 N1016)
271
1, 1, 3, 6, 13, 24, 48, 86, 160, 282, 500, 859, 1479, 2485, 4167, 6879, 11297, 18334, 29601, 47330, 75278, 118794, 186475, 290783, 451194, 696033, 1068745, 1632658, 2483234, 3759612, 5668963, 8512309, 12733429, 18974973, 28175955, 41691046, 61484961, 90379784, 132441995, 193487501, 281846923 (列表;图表;参考;;历史;文本;内部格式)
抵消

0,3

评论

n的二维分区,其中没有任何行或列比其前面的行或列长(比较A001970号). 例如,a(4)=13:

4.31.3.22.211.21..2.111.111.11.1但不是2

.....1....2.....1...1......1...11.1..1........ 11

....................1.............1..1

.....................................1

在上述内容中,还必须要求行和列不减少,例如,也禁止[1,1;2](这意味着如果空单元格标识为充满0的单元格,则行和列的长度不减少)-M.F.哈斯勒2018年9月22日

也可以视为房间角落中立方体的“安全堆积”数量:高度不应远离角落增加-沃特·梅森

还有由两种颜色的n个对象组成的分区数,每个部分至少包含一个黑色对象;请参见示例-克里斯蒂安·鲍尔2004年1月8日

将n划分为1类部件1、2类部件2……、。。。,k部件k的类型。例如,n=3表示111、12、12'、3、3'、3''-乔恩·佩里2004年5月27日

前面两个注释中分区之间的双射是通过用k个黑色对象标识一个部件,并用k类型的部件标识-大卫·斯卡布勒乔格·阿恩特2013年5月1日

也可以看作是nXn矩阵的Jordan标准形的个数。(即,一个5 X 5矩阵有24种不同的Jordan标准形,取决于每个特征值的代数和几何多重性。)-Aaron Gable(agable(AT)hmc.edu),2009年5月26日

(1/n)*n项的卷积*A001157号(n的除数平方和):(1,5,10,21,26,50,50,85,…)=a(n)。如[布雷索德,第12页]所示:1/6*[1*24+5*13+10*6+21*3+26*1+50*1]=288/6=48-加里·亚当森,2009年6月13日

与充气型卷曲(1、0、1、0,3、0、6、0、13…)=A026007号: (1, 1, 2, 5, 8, 16, 28, 49, 83, ...). -加里·亚当森,2009年6月13日

从偏移量1开始=三角形的行和A162453型. -加里·亚当森2009年7月3日

不幸的是,在G.Almkvist的论文中,Wright公式也是不完整的:“渐近公式和广义Dedekind和”,第344页,(分母应该是sqrt(3*Pi)而不是sqrt。)。史蒂文·芬奇(Steven Finch)在论文《整数分区》(Integer Partitions)中已经纠正了这个错误-瓦茨拉夫·科特索维奇2015年8月17日

对偶也是多集链的多集的非同构权重n链的个数。对于每个顶点,多集分区的对偶有一个块,该块由包含该顶点的块的索引(或位置)组成,并以重数计算。多集分区的重量是其各部分大小的总和-古斯·怀斯曼2018年9月25日

参考文献

G.Almkvist,《平面分区数量的差异》,手稿,约1991年。

G.E.Andrews,《分割理论》,Addison-Wesley,1976年,第241页。

D.M.Bressoud,《证明与确认》,坎布。大学出版社,1999年;第10页第(n)页。

Miklos Bona,编辑,《枚举组合数学手册》,CRC出版社,2015年,第575页。

L.Carlitz,生成函数和配分问题,A.L.Whiteman编辑,第144-169页,《数论》,Proc。交响乐。纯数学。,8 (1965). 阿默尔。数学。Soc.,见第145页,等式(1.6)。

I.P.Goulden和D.M.Jackson,《组合计数》,纽约威利出版社,1983年,(5.4.5)。

P.A.MacMahon,《数字分割理论回忆录——第六部分》,菲尔译。皇家学会,211(1912),345-373。

P.A.MacMahon,组合分析。剑桥大学出版社,伦敦和纽约,1915年第1卷和1916年第2卷;见第2卷,第332页。

P.A.MacMahon,除数平方和与给定数的分区数之间的联系,信使数学。,54 (1924), 113-116. 《论文集》,麻省理工出版社,1978年,第一卷,第1364-1367页。见表二-N.J.A.斯隆2014年5月21日

N.J.A.Sloane,《整数序列手册》,学术出版社,1973年(包括该序列)。

N.J.A.Sloane和Simon Plouffe,《整数序列百科全书》,学术出版社,1995年(包括该序列)。

链接

T.D.Noe和Suresh Govindarajan,n=0..6500时的n,a(n)表(T.D.Noe的第一个401条款)

G.阿尔姆克维斯特,渐近公式与广义Dedekind和,专家。数学。,7(1998年第4期),第343-359页。

G.E.Andrews和P.Paule,麦克马洪的分区分析十二:平面分区,J.Lond。数学。《社会学杂志》,76(2007),647-666。

A.O.L.Atkin、P.Bratley、I.G.McDonald和J.K.S.McKay,关于m维划分的一些计算,程序。外倾角。Phil.Soc.,63(1967),1097-1100。

A.O.L.Atkin、P.Bratley、I.G.McDonald和J.K.S.McKay,关于m维划分的一些计算,程序。外倾角。Phil.Soc.,63(1967),1097-1100。[带注释的扫描副本]

Michael Beeler、R.William Gosper和Richard C.Schroeppel,哈克姆,项目18,备忘录AIM-239,马萨诸塞州剑桥市麻省理工学院人工智能实验室,1972年。

爱德华·本德,枚举中的渐近方法《SIAM评论》16(1974),第4期,第509页。

E.A.Bender和D.E.Knuth,平面分区的枚举,J.Combin。理论A.13,40-541972。

S.Benvenuti、B.Feng、A.Hanany和Y.H.He,规范理论中BPS算子的计数:Quivers、syzygies和plethysics,arXiv:hep-th/0608050,第41-42页。

亨利·博托姆利,初始术语说明

D.M.Bressoud和J.Propp,交替符号矩阵猜想的求解,通知Amer。数学。Soc.,46(1999年第6期),637-646。

Shouvik Datta、M.R.Gaberdiel、W.Li和C.Peng,平面分区的扭曲扇区,arXiv预印本arXiv:1606.07070[hep-th],2016年。

方文杰、黄显奎和康美贤,带状平面剖分渐近中exp(n^(1/2))到exp(n ^(2/3))的相变,arXiv:2004.08901[math.CO],2020年。

史蒂文·芬奇,整数分区2004年9月22日。[经作者许可,缓存副本]

P.Flajolet和R.Sedgewick,分析组合数学, 2009; 见第580页。

伯恩哈德·海姆(Bernhard Heim)、马库斯·纽豪泽(Markus Neuhauser)和罗伯特·特罗格(Robert Tröger),平面分割不等式,arXiv:2109.15145[math.CO],2021。

INRIA算法项目,组合结构百科全书141

瓦茨拉夫·科特索维奇,基于生成函数卷积的q序列渐近性求法,arXiv:1509.08708[math.CO],2015-2016,第18页。

瓦茨拉夫·科特索维奇,图-渐近比率(250000项)

D.E.Knuth,关于实心分区的一点注记,数学。公司。24, 955-961, 1970.

Oleg Lazarev、Matt Mizuhara和Ben Reid,关于分划、平面分划和多重分划的一些结果2010年8月13日。

P.A.MacMahon,组合分析.

J.Mangual,通过自由费米子的麦克马洪公式,arXiv预印本arXiv:1210.7109[math.CO],2012.-发件人N.J.A.斯隆2013年1月1日

Ville Mustonen和R.Rajesh,固体隔板渐近行为的数值估计。。。,arXiv:cond-mat/0303607【cond-mat.stat-mech】,2003年。

L.Mutafchiev和E.Kamenov,关于平面分割数的渐近公式。。。,arXiv:math/0601253[math.CO],2006;C.R.学院。保加利亚科学。59(2006),第4期,361-366。

Ken Ono、Sudhir Pujahari和Larry Rolen,平面配分函数的Turán不等式,arXiv:2201.01352[math.NT],2022。

I.帕克,划分bijections,一项调查《拉马努扬杂志》第12卷(2006年)第5-75页。

A.Rovenchak,零件数量有限的平面分区的枚举,arXiv预印本arXiv:1401.4367[math-ph],2014年。

拉斐尔·舒马赫,自我计数身份,光纤。夸脱。,55(2017年第2期),157-167。

N.J.A.斯隆,变换

J.Stienstra,马勒测量、艾森斯坦级数和二聚体,arXiv:math/0502197[math.NT],2005年。

Balázs Szendrői,非交换Donaldson-Thomas不变量与二次曲线《几何与拓扑》12.2(2008):1171-1202。

埃里克·魏斯坦的数学世界,平面分区

E.M.Wright,可旋转分区,J.伦敦数学。《社会学杂志》,43(1968),501-505。

“核心”序列的索引项

配方奶粉

G.f.:产品{k>=1}1/(1-x^k)^k麦克马洪,1912年。

序列[1,2,3,…]的欧拉变换。

a(n)~(c2/n^(25/36))*exp(c1*n^)(2/3)),其中c1=A249387号=2.00945…和c_2=A249386型=0.23151…-赖特,1931年。Rod Canfield于2010年6月1日更正-见Mutafchiev和Kamenov。c2的精确值是e^(2c)*2^(-11/36)*zeta(3)^(7/36)*。

c1的精确值为3*2^(-2/3)*Zeta(3)^(1/3)=2.0094456608770137530649-瓦茨拉夫·科特索维奇2014年9月14日

a(n)=(1/n)*Sum_{k=1..n}a(n-k)*sigma_2(k),n>0,a(0)=1,其中sigma_(n)=A001157号(n) =n的除数平方和-弗拉德塔·乔沃维奇2002年1月20日

通用公式:exp(总和{n>0}σ_2(n)*x^n/n)。a(n)=和{pi}乘积{i=1..n}二项式(k(i)+i-1,k(i+n*k(n)=n-弗拉德塔·乔沃维奇2003年1月10日

发件人瓦茨拉夫·科特索维奇2016年11月7日:(开始)

更精确的渐近性:a(n)~ Zeta(3)^(7/36)*exp

*(1+c1/n^(2/3)+c2/n^

c1=-0.239944221250649114273759…=-277/(864*(2*泽塔(3))^(1/3))-泽塔(2)^

c2=-0.02576771365117017401620018082…=353*泽塔(3)^(1/3)/(248832*2^(2/3))-17*泽塔

c3=-0.00533195302658826100834286…=-629557/859963392-42944125/(7739670528*泽塔(3))+14977*泽塔

和A=A074962号是Glaisher-Kinkelin常数。

(结束)

例子

13的平面分区:

4 3 1 1

2 1

1

a(5)=(1/5!)*(σ2(1)^5+10*σ2*σ2(5)=24-弗拉德塔·乔沃维奇2003年1月10日

发件人大卫·斯卡布勒乔格·阿恩特2013年5月1日:(开始)

有一个(4)=13分区,由4个2种颜色的物体组成(‘b’和‘w’),每个部分至少包含一个黑色物体:

1个黑色部分:

[画外音]

2个黑色部件:

[网址:bbww]

【bww,b】

[体重,体重]

3个黑色部件:

[英国广播公司]

[bbw,b](英国广播公司)

[bb,bw]

(但不是:[bw,bb])

[体重,体重,体重]

4个黑色部件:

[bbbb](英国广播公司)

[bbb,b](英国广播公司)

[bb,bb]

[bb、b、b]

【b、b、b和b】

(结束)

整数4的相应分区为:

4'''

4''

3'' + 1

2' + 2'

4'

3' + 1

2 + 2'

2' + 1 + 1

4

3 + 1

2 + 2

2 + 1 + 1

1 + 1 + 1 + 1. -杰弗里·克雷策2014年11月29日

发件人古斯·怀斯曼2018年9月25日:(开始)

a(4)=13多集链的非同构代表,其对偶也是多集链:

{{1,1,1,1}}

{{1,1,2,2}}

{{1,2,2,2}}

{{1,2,3,3}}

{{1,2,3,4}}

{{1},{1,1,1}}

{{2},{1,2,2}}

{{3},{1,2,3}}

{{1,1},{1,1}}

{{1,2},{1,2}}

{{1},{1},{1,1}}

{{2},{2},{1,2}}

{{1},{1},{1},{1}}

(结束)

G.f.=1+x+3*x^2+6*x^3+13*x^4+24*x^5+48*x^6+86*x^7+160*x^8+。。。

MAPLE公司

级数(mul((1-x^k)^(-k),k=1..64),x,63);

#第二个Maple项目:

a: =proc(n)选项记忆`如果`(n=0,1,添加(

a(n-j)*numtheory[σ][2](j),j=1..n)/n)

结束时间:

seq(a(n),n=0..50)#阿洛伊斯·海因茨2015年8月17日

数学

系数列表[系列[积[(1-x^k)^-k,{k,64}],{x,0,64}],x]

泽塔[3]^(7/36)/2^(11/36)/Sqrt[3 Pi]/Glaisher E^(3泽塔[3]^(1/3)(n/2)^(2/3)+1/12)/n^(25/36)(*赖特之后的渐近公式;瓦茨拉夫·科特索维奇2014年6月23日*)

a[0]=1;a[n]:=a[n]=和[a[n-j]除数Sigma[2,j],{j,n}]/n;表[a[n],{n,0,50}](*Jean-François Alcover公司2015年9月21日之后阿洛伊斯·海因茨*)

系数列表[Series[Exp[Sum[DivisorSigma[2,n]x^n/n,{n,50}]],{x,0,50}],x](*埃里克·韦斯特因2018年2月1日*)

黄体脂酮素

(PARI){a(n)=如果(n<0,0,polceoff(exp(总和(k=1,n,x^k/(1-x^k)^2/k,x*O(x^n)),n))}/*迈克尔·索莫斯2005年1月29日*/

(PARI){a(n)=如果(n<0,0,polceoff(prod(k=1,n,(1-x^k+x*O(x^n))^-k),n))}/*迈克尔·索莫斯2005年1月29日*/

(PARI)我的(N=66,x='x+O('x^N));Vec(prod(n=1,n,(1-x^n)^-n))\\乔格·阿恩特2014年3月25日

(PARI)A000219号(n) =#PlanePartitions(n)\\请参阅A091298号用于PlanePartitions()。用于说明:比上面慢得多-M.F.哈斯勒2018年9月24日

(Python)

从sympy导入缓存

从sympy.theory导入除数sigma

@缓存

定义A000219号(n) :

如果n<=1:

返回1

收益总额(A000219号范围(1,n+1)中k的(n-k)*除数_sigma(k,2))//n

打印([A000219号(n) 对于范围(20)内的n)

#R.J.马塔尔2009年10月18日

(朱莉娅)

使用Nemo、Memoize

@记忆函数a(n)

如果n==0,返回1结束

s=总和(a(n-j)*1:n中j的除数sigma(j,2))

返回div(s,n)

结束

[0:20中的a(n)代表n]#彼得·卢什尼2020年5月3日

(SageMath)#使用[EulerTransform来自A166861号]

b=欧拉变换(λn:n)

打印([b(n)代表范围(37)中的n])#彼得·卢什尼2020年11月11日

交叉参考

囊性纤维变性。A000784号,A000785号,A000786号,A005380型,A005987号,A048141号,A048142号,A089300型.

囊性纤维变性。A023871号-A023878号,A026007号,A001157号,A162453型,A285216型.

差异:A191659号,A191660型,A191661号.

的行总和A089353号A091438号A091298号.

第k列=第1列,共列A144048号. -阿洛伊斯·海因茨2012年11月2日

序列“r行分区数”:A000041号(r=1),A000990型(r=2),A000991号(r=3),A002799号(r=4),A001452号(r=5),A225196型(r=6),A225197型(r=7),A225198型(r=8),A225199型(r=9)。

囊性纤维变性。A249386型,A249387号.

囊性纤维变性。A161870型,A255610型,A255611型,A255612型,A255613型,A255614型,A193427号.

上下文中的序列:A225197型 A225198型 A225199型*A356941型 A191782号 A358905型

相邻序列:A000216号 A000217号 A000218号*A000220型 A000221号 A000222号

关键词

非n,美好的,容易的,核心

作者

N.J.A.斯隆

扩展

更正人N.J.A.斯隆2006年7月29日

次要编辑人瓦茨拉夫·科特索维奇2014年10月27日

状态

经核准的

查找|欢迎光临|维基|注册|音乐|地块2|演示|索引|浏览|更多|网络摄像头
贡献新序列。或评论|格式|样式表|变换|超级搜索|最近
OEIS社区|维护人OEIS基金会。

许可协议、使用条款、隐私政策。.

上次修改时间:美国东部夏令时2023年3月26日04:58。包含361529个序列。(在oeis4上运行。)