登录
这个网站是通过捐款来支持的。OEIS基金会.

 

标志


提示
问候整数序列的在线百科全书!)
A000 0 51 A(n)=2 ^ n+1。
(原M0717N0266)
二百二十六
2, 3, 5、9, 17, 33、65, 129, 257、513, 1025, 2049、4097, 8193, 16385、32769, 65537, 131073、262145, 524289, 1048577、2097153, 4194305, 8388609、16777217, 33554433, 67108865、134217729, 268435457, 536870913、1073741825, 2147483649 列表图表参考文献历史文本内部格式
抵消

0,1

评论

与PISOT序列L(2,3)相同。

和的连续分数的长度(k=0,n,1/3 ^(2 ^ k))。-班诺特回旋曲11月12日2003

也见A000 4119对于a(n)=2a(n-1)- 1,第一项=1。-菲利普德勒姆2月20日2004

从第二项(n>=1),在基2中,这些数呈现模式1000…0001(具有n-1个零),这是二进制2 ^ n-2:(0)111…1110的“相反”(参见)。A000 0918-亚历山大瓦扬伯格5月31日2005

n为表达式2 ^ n/(n-1)为整数的数n。-保罗·拉瓦5月12日2006

设A为n阶的HeSeNebg矩阵,由A〔1,j〕=1,A〔i,i〕:=5,(i>1),a [ i,i-1 ]=-1,和[i,j]=0,否则。然后,对于n>=1,a(n-1)=(- 1)^(n-1)c-(a,3)。-米兰扬吉克1月27日2010

第一差异A000 6127. -莱因哈德祖姆勒4月14日2011

序列形式的奇素数A019434费马素数。-戴维·W·威尔逊11月16日2011

皮萨诺周期长度:1, 1, 2、1, 4, 2、3, 1, 6、4, 10, 2、12, 3, 4、1, 8, 6、18, 4、…-马塔尔8月10日2012

提到的皮萨诺周期长度(见上文)与A000 77 33-奥玛尔·E·波尔8月10日2012

对于任何k>1,只有正整数不是1 mod(2k+1)。-乔恩佩里10月16日2012

对于n>1,A(n)是N次迭代后希尔伯特曲线段的总长度。-基瓦尔纳夸拉扬3月30日2014

Fr·Enle de Bessy(1657)证明了A(3)=9是该序列中唯一的平方。-查尔斯5月13日2014

A(A000 621(n)modA000 621(n)=0。-莱因哈德祖姆勒7月17日2014

A(n)是在{n 1,…(n-1)}中最多两个元素所作的不同的可能和的数目,对于n>0。-德里克奥尔12月13日2014

对于n>0,给定任意一组(n)格点在r^ n中,在该集合中存在2个不同的成员,其中点也是格点。-梅尔文佩拉尔塔1月28日2017

(n+1)-星图中独立顶点集、非冗余集和顶点覆盖的个数。-埃里克·W·韦斯斯坦,八月04日和9月21日2017

此外,在2(N-1)-交叉棱镜图中的最大匹配数。-埃里克·W·韦斯斯坦12月31日2017

推荐信

P. Bachmann,Niedere Zahlentheorie(1902, 1910),重印切尔西,NY,1968,第2卷,第75页。

伯纳德F.E.Nele de Bess,解决问题的主要问题是CubOS和EddiATOS(1657)。巴黎国家图书馆。

S.N.J.A.斯隆,《整数序列手册》,学术出版社,1973(包括这个序列)。

S.N.J.A.斯隆和Simon Plouffe,《整数序列百科全书》,学术出版社,1995(包括这个序列)。

链接

Ivan Panchenkon,a(n)n=0…100的表

E. R. Berlekamp数学心理测量学的贡献未出版的贝尔实验室备忘录,第08期第1968期[注释扫描副本]

Bakir Farhi某些无穷卢卡斯相关级数的求和,J. Int. Seq,第22卷(2019),第19.1.6条。

Massimiliano Fasi,吉安玛利亚尼格尔波齐奥,归一化BoHiHier-HiSimbg矩阵的行列式,曼彻斯特大学(英国,2019)。

英里亚算法项目组合结构百科全书114

英里亚算法项目组合结构百科全书362

Edouard Lucas简单周期数值函数理论,斐波那契协会,1969。阿梅尔《英语词汇简报》一书的英译。J.数学,1(1878),184-240。

Kival Ngaokrajang希尔伯特曲线的N=1…5的图解

Simon Plouffe近似逼近学位论文,博士论文,1992。

Simon Plouffe1031生成函数与猜想1992届屈加坡大学。

白花阿米莉亚关于梅森、费马、Cullen和Woodall数的广义和,意大利都灵理工大学(意大利,2019)。

白花阿米莉亚广义熵的组合运算在数论中的应用《国际科学杂志》(2019)第8卷,第4期,第87至92页。

Eric Weisstein的数学世界,交叉棱镜图

Eric Weisstein的数学世界,坎宁安数

Eric Weisstein的数学世界,Fermat Lucas数

Eric Weisstein的数学世界,希尔伯特曲线

Eric Weisstein的数学世界,独立顶点集

Eric Weisstein的数学世界,无冗余集

Eric Weisstein的数学世界,匹配数

Eric Weisstein的数学世界,最大独立边集

Eric Weisstein的数学世界,Rudin Shapiro序列

Eric Weisstein的数学世界,星图

Eric Weisstein的数学世界,顶点覆盖

常系数线性递归的索引项,签名(3,- 2)

公式

a(n)=2*a(n-1)- 1=3*a(n-1)-2*a(n-2)。

G.f.:(2-3*x)/((1-x)*(1-2×x))。

第一差异A059444. -埃米里埃德奇04三月2004

a(0)=1,然后A(n)=(和i=0…n-1(i))-(n-2)。-杰拉尔德麦加维7月10日2004

逆二项变换A000 768. 此外,卢卡斯序列L(3, 2)中的V序列。-罗斯拉哈伊,07月2日2005

A(n)=A127904(n+1)n>0。-莱因哈德祖姆勒,05月2日2007

等于[ 2, 1, 1,1,…]的二项变换。-加里·W·亚当森4月23日2008

A(n)=A000 0 79(n)+ 1。-奥玛尔·E·波尔5月18日2008

E.g.f.:Exp(x)+EXP(2×x)。-穆罕默德·K·阿扎里安,02月1日2009

A(n)=A024036(n)/A000 0225(n)。-莱因哈德祖姆勒2月14日2009

彼得卢斯尼,4月20日2009:(开始)

伯努利数的加权二项和A02664/A027A02664(1)=1(这相当于定义b{{n}=b{{n}(1))。

A(n)=SuMu{{K=0…n} C(n,k)*b{{N-k}* 2 ^(k+1)/(k+1)。(也见)A052584A)(结束)

A(n)是n(n)=1的a(n-1)次奇数。-雅罗斯拉夫克利泽克4月25日2009

莱因哈德祖姆勒,2月28日2010:(开始)

A(n)*A000 0225(n)=A000 0225(2×N)。

A(n)=A1737(n,0)。(结束)

如果p[i]=斐波那契(i-4),如果A是由n(a,j)=p [j-i+1 ],(i <=j)定义的n阶的HeSeNebong矩阵,则a [ i,j ]=1,(i=j+1),否则a [ i,j ]=0。然后,对于n>=1,A(n-1)=DET A.米兰扬吉克08五月2010

a(n+1)=a(n)+a(n+1)+A000 0225(n)。-伊凡·尼亚基耶夫6月24日2012

A(n)=3A000 785(n-1)/ 2)为n奇数。-埃里克·W·韦斯斯坦7月17日2017

枫树

A000 0 51=-(- 2 + 3×Z)/(2×Z-1)/(Z-1);西蒙·普劳夫在他的1992篇论文中

A:=N->加法(二项式(n,k)*伯努利(N-K,1)* 2 ^(k+1)/(k+1),k=0…n);彼得卢斯尼4月20日2009

Mathematica

表〔2 ^ n+1,{n,0, 33 }〕

2 ^范围〔0, 20〕+1(*)埃里克·W·韦斯斯坦7月17日2017*)

线性递归[ { 3,- 2 },{ 2, 3 },20〕(*)埃里克·W·韦斯斯坦9月21日2017*)

黄体脂酮素

(PARI)A(n)=2 ^ n+1

(PARI)第一(n)=Vec((2 - 3×x)/((1 -x)*(1 -2×x))+O(x^ n))伊恩福克斯12月31日2017

(哈斯克尔)

A000 051=(+ 1)。A000 0 79

A000 0551列表=迭代((减去1)。(* 2)2

——莱因哈德祖姆勒03五月2012

交叉裁判

除了最初的1,与A094337.

A000 877对于PISOT序列的定义。

囊性纤维变性。A034A052539A034 74A0623A034 491A06295A0623 96A06297A000 768A0633676A063141A07600-A07624A0345A178248A22808AA1737A059444A000 0 79A000 5126A1766 911945年.

数组第2列A10338.

囊性纤维变性。A000 785(A(n-1)/ 2)/奇数n的3)。

语境中的顺序:A091697 A1097 A248155*A094337 A213705 A565637

相邻序列:A000 00 48 A000 00 49 A000 0 50*A000 00 52 A000 0 53 A000 00 54

关键词

诺恩容易

作者

斯隆

地位

经核准的

查找γ欢迎γ维基γ注册γ音乐γ情节2γ演示γ指数γ浏览γ更多γ网络摄像机
贡献新的SEQ。或评论γ格式γ样式表γ变换γ超级导引头γ最近
OEIS社区通过保持OEIS基金会

许可协议、使用条款、隐私政策。.

最后修改9月22日21:29 EDT 2019。包含327323个序列。(在OEIS4上运行)