海草植株擴繁理論及其定植效應的研究進展
  漁業科學進展  2020Vol. 41 Issue(4):181-189  DOI:10.19663/j.issn2095-9869.20190506001
0

引用本文 

張沛東,張彥浩,張宏瑜,張秀梅.海草植株擴繁理論及其定植效應的研究進展[J].漁業科學進展,2020,41(4):181-189.DOI:10.19663/j.issn2095-9869.20190506001.
ZHANG Peidong,ZHANG Yanhao,ZHANG Hongyu,ZHANG Xiumei.Research Advances in Shoot Propagation Theory and Planting Technique of SeagrassesS[J].Progress in Fishery Sciences,2020,41(4):181-189.DOI:10.19663/j.issn2095-9869.20190506001.

基金項目

國家自然科學基金專案(41576112)、中央高校基本科研業務費專項(201822021)和科技基礎性工作專項(2015FY110600)共同資助

通訊作者

張沛東,教授,E-mail:zhangpdsg@ouc.edu.cn

文章歷史

收稿日期:2019-05-06
收修改稿日期:2019-08-20
海草植株擴繁理論及其定植效應的研究進展
張沛東 張彥浩張宏瑜張秀梅    
中國海洋大學海水養殖教育部重點實驗室青島266003
摘要:海草(Seagrasses)是地球上一類經陸生植物演化,發展到可以完全在海洋環境中生活的高等被子植物,具有重要的生態功能和經濟價值。本文綜述了近年來國內外對海草植株擴繁理論及其定植效應的研究進展,總結了影響海草植株生長擴繁的環境因素,探討了定植間距、定植階段、施肥處理等定植理論和科技對海草植株定植效應的影響,並對現時存在的科學問題進行歸納總結,就未來我國沿岸受損海草床生態系統的規模化修復研究提出了展望。
關鍵字尅隆生長    生態因數    植株定植    海草    
Research Advances in Shoot Propagation Theory and Planting Technique of SeagrassesS
ZHANG Peidong ZHANG YanhaoZHANG HongyuZHANG Xiumei    
Key Laboratory of Mariculture,Ministry of Education,Ocean University of China,Qingdao 266003
Abstract:Seagrass is a kind of higher angiosperm that originated as a terrestrial plant and over time became adapted to a marine environment.Seagrass beds have important ecological and economical value in that they provide habitats and feeding areas for diverse marine fauna,playing a key role in establishing a flourishing marine ecosystem.From 1993 to 2003,the seagrass acreage lost reached 2.6×106hm2. The first estimated acreages of seagrass beds were recorded in 1879,and based on historical records,it is estimated that more than 5.1×106hm2of seagrass beds have completely disappeared.With the severe decline of seagrass beds and the public's recent awareness of their ecological functions,seagrass bed ecological restoration has become one of the more important coastal,environmental engineering projects.Habitat enhancement is the main method utilized in seagrass bed restoration.Currently,seagrass bed restoration is in urgent need of well-organized planning,and large-scale artificial propagations have become vital to current habitat restoration.In order to significantly increase the quantity and efficiency with which seagrass is propagated,this study was to understand the characteristics of seagrass shoot clonal propagation,and determine what techniques would allow efficient plant propagation.In order to achieve highly efficient seagrass shoot propagation,it is necessary to: 1)Promote growth and propagation of key factors;2)Construct and implement an artificial propagation platform;and 3)Disseminate the growth and propagation planting technique.In this study,the current state of research and knowledge of shoot propagation and planting of seagrasses was reviewed,the environmental factors affecting the growth and development of seagrass shoots was summarized,and the effect of planting space,planting time,and fertilization on the seagrass shoot growth and production was discussed.In addition,the key problems existing at present were summarized.Given the advances in research and public desire to restore damaged ecosystems,there is strong potential for large-scale restoration of damaged seagrass beds along the coast of China in the future,and the summaries provided here will hopefully be a useful reference to these projects.
Key wordsClonal growth    Ecological factor    Shoot planting    Seagrass    

海草(Seagrasses)是地球上一類經陸生植物演化,發展到完全適應海洋環境的高等被子植物,其一般分佈於沿岸的潮間帶或潮下帶淺水區(Shortet al,2007Lopezet al,2011)。構築的海草床是淺海三大典型生態系統之一,具有極其重要的生態功能和經濟價值,被稱為海洋環境的“生態工程師”,具有强大的水質改善作用和高效的固碳能力(Mcleodet al,2011高亞平等,2013),同時,也為眾多海洋生物提供重要的食物來源、棲息地、產卵場、育幼場,甚至病原細菌的生物屏障(Lambet al,2017吳亞林等,2018)。然而,受人類活動和自然環境變遷的影響,全球絕大多數海草床均處於嚴重的日益衰退趨勢,僅1993~2003年全球海草床已有2.6×106hm2退化(Martinset al,2005),自1879年首次記錄海草床面積以來,據估計已有超過5.1×106hm2的海草床完全消失(Waycottaet al,2009)。

隨著海草床退化的日趨嚴峻,有關海草床生態恢復理論與科技的研究逐漸受到國內外學者的重視。截至目前,海草床的恢復手段主要包括生境恢復法、種子法及植株移植法,其中,植株移植法又可細分為草塊法、草皮法和根狀莖法(Goodmanet al,1995Liet al,2010)。植株移植法是現時應用最廣泛的修復方法,然而,現時海草苗種人工培育理論和科技尚不成熟,供體植株均采自天然海草床,不僅對供體草床可能會造成較大的負面影響,而且還限制植株移植的規模化發展。囙此,研究海草植株人工擴繁理論和科技,實現供體植株的高效人工培育,對建立生態友好型的海草植株移植理論和科技至關重要。

本文綜述了近年來國內外對海草植株擴繁理論及其定植效應的研究進展,概述了影響海草植株擴繁生長的環境因素,探討了植株定植理論和定植科技對海草植株定植效應的影響,並對現時存在的科學問題進行歸納總結,以期為我國沿岸受損海草床生態系統的規模化修復提供理論參攷。

1海草植株擴繁理論研究進展 1.1海草植株擴繁的理論基礎

植物的生殖管道分為有性生殖與無性生殖。有性生殖為植物的種子生殖,無性生殖包括分株、尅隆等,是植株擴繁科技的理論基礎。

Busch等(2010)研究發現,利用種子生殖對水生植物進行擴繁的效果並不理想,種子成活率約為10%,這也成為利用種子實現植株擴繁的限制因素。對於水生植物的組織培養研究相對較少,且利用組織培養管道對海洋植物的擴繁困難較大,僅在菹草(Potamogeton crispus)和鳳眼蓮(Eichhornia crassipes)等種類實現了組織擴繁(高建等,2006李學寶等,1997),而採取碘化鉀對鰻草(Zostera marina)葉片組織進行消毒,污染率達46%,難以達到完全無污染(劉延嶺等,2013)。通過酶解獲得的鰻草原生質體成活率可達85%,但在後期培養過程中,分裂率極低,只有極少數原生質體出現凹陷並分裂出少量細胞團(崔翠菊等,2014Balestriet al,1992)。於函(2008)研究發現,海草組織培養使用的消毒液易通過氣道進入組織內部,損害外植體,導致愈傷組織誘導率降低且質量差,外植體移入培養基後,易出現褐化現象,影響培養資料的生長和分化,嚴重抑制愈傷組織的誘導效果。這些因素均嚴重限制了海草的種子擴繁或組織擴繁。

通過無性生殖達到海草種群的持續性維持、更新及擴張是海草床自我維護和自我發育的主要機制,主要有2個管道(圖1):(1)分枝型尅隆,在母株最靠近地面處的莖節外形成側枝,母株與側枝、分株之間可進行營養轉移;(2)根狀莖型尅隆,母株的根狀莖伸出橫走莖,橫走莖的每一個莖節均可長出若干根,進而生成完整的新植株,且理論上橫走莖能够無限生長(原永黨等,2010)。海草植株側枝、分株、分枝的產生可有效促進植株產量的提高,根狀莖的頻繁分枝尅隆,將更多的資源投入到水准擴展中,從而獲得較高的植株密度(Watanabeet al,2005)。

圖1海草植株分枝型尅隆(A)與根狀莖型尅隆(B) Fig.1Branch-type clones(A)and rhizome-type clones(B)of seagrass shoots

在資源分配策略上,海草將近90%的種群總生物量分配於地下組織和營養枝,進一步表明尅隆生長在其種群繁殖中佔有重要地位(李樂樂等,2015)。澳大利亞波喜蕩草(Posidonia australis)的分株重量可達183 mg DW/shoot,卵葉喜鹽草(Halophila ovalis)的分株頻率達到0.5分株/株(Duarte,1991);南極根枝草(Amphibolis antarctica)的垂直莖分枝率可達3.8%,龜裂泰來草(Thalassia testudinum)的根狀莖分枝率達5.8%(Marbàet al,2003)。由此可見,海草通過植株的無性生殖實現其種群的維持、更新以及擴張是至關重要的。

囙此,通過促進海草植株的無性生殖,實現植株高效率的分株與分枝,從而新增植株產量與植株密度,是實現植株高效擴繁的首要任務。環境因數對植物擴繁具有極其重要的作用,囙此,充分瞭解環境因數對海草生長發育的影響,查明其生理響應過程,是建立高效的海草植株擴繁理論的關鍵。

1.2海草植株擴繁的環境適宜性

海水環境因數,如溫度、光照、鹽度、營養鹽、CO2、底質、水流流速等對海草的存活與生長起關鍵性作用。

1.2.1溫度

溫度影響生物的生理生化過程,是控制海草存活與生長的關鍵因素(Leeet al,2007)。溫度在水生生態系統中具有較高的可預測性,對於季節性海草的生長發揮著重要作用。Biebl等(1971)研究發現,溫度首先通過影響植株的光合作用,進而影響植株的生長;其次,溫度可以調節植株葉片的氣孔閉合及光合色素含量,進而調節植株的呼吸作用及光合作用,最終影響植物生長(Robertsonet al,1984)。不同海草種類對環境溫度的變化表現出不同的適應能力,其適宜生長溫度見錶1

錶1不同種類海草的適宜生長溫度 Tab.1Optimum temperature for growth of different seagrass species
1.2.2鹽度

鹽度是影響海草存活與生長的關鍵因素。海草一般具有較强的鹽度耐受能力,特別是對低鹽度具有較强的耐受能力,可在鹽度為5~35的範圍內正常存活和生長(Nejrupet al,2008),但多數種類的鹽度偏好存在較大差异(錶2)。錶2可以看出,海草對鹽度的耐受性主要包括形態、生理及分子3個層面(鄧文浩等,2018)。形態方面主要包括與海水直接接觸且具有一層顯著增厚的細胞壁葉片以及根部表皮細胞具有的細胞壁增厚結構(葉春江等,2002)。生理方面包括滲透調節以及酶的耐受性。研究發現,鰻草通過無機離子與有機溶質的共同作用完成其滲透調節,即鹽度的耐受性是多種物質共同作用的結果。從海草植株體內選取的PEP羧化酶對鹽度具有很高的抗性(葉春江等,2002),說明海草對鹽度的耐受性在一定程度上是因為其體內的酶具有耐鹽性。此外,海草植株體內不同類型的細胞之間出現離子區域化,即由光合細胞向薄壁細胞轉運,對海草的鹽度耐受性也起到重要作用(葉春江等,2002)。分子方面的研究發現,鰻草葉片質膜表面存在Na+/H+逆向轉運蛋白,可維持細胞內部較高的電化學梯度,對海草鹽度耐受性至關重要(Fernándezet al,1999)。Kong等(2013)研究發現,鰻草葉片組織在不同鹽度脅迫下的全長cDNA文庫中存在與耐鹽相關的功能基因,這為海草的耐鹽機制提供了理論基礎。然而,過低的鹽度誘導海草植株光合速率和與之相伴的無機碳含量顯著下降,進而導致植株生長變緩,甚至死亡(Mazzellaet al,1986)。

錶2不同種類海草適宜生長的鹽度偏好 Tab.2Salinity preferences for suitable growth of different seagrass species
1.2.3光照

光照對海草的生長與分佈等具有至關重要的作用。光照主要影響海草的光合作用,植物體內的葉綠素a、葉綠素b通過對光的吸收,進行C3、C5等一系列生化反應,製造有機物,進而影響到海草的生長。其中,光照週期、光質及光照強度是影響海草生長的關鍵因素。

1.2.3.1光質

光質與海草光合色素含量密切相關。光敏素(Phytochrome)、向光素(向光蛋白,Phototropin)和隱花素(Cryptochrome)等光受體在植物體內接受光訊號,並通過信號轉導,調節植物的生長發育(許大全等,2015)。植物進行光合作用最有效的光質是藍光和紅光,在水環境生態系統中,光線透過海水時,大部分紅光被吸收,僅有少部分藍光被吸收,囙此,與紅光相比,藍光更具有穿透能力。也有研究表明,海草在藍光條件的生長狀況優於自然光條件,因為藍光更能引起植物葉片氣孔的開放,且藍光的效能幾乎是紅光的10倍,處於藍光下的植物細胞色素濃度高,以每分子葉綠素計的光合速率高(Sharkeyet al,1981Wilhelmet al,2010)。

1.2.3.2光照強度

光照強度對植物光合作用的影響至關重要。海草植株光合效應模式與陸生植物沒有本質區別。適宜光强範圍內新增光强,激發植株體內的中心色素(P)對光能的捕獲,成為激發態(P*),激發態的中心色素通過連續不斷的氧化還原,完成光能到電能的轉化。

Ochieng等(2010)研發發現,在100%表面輻射照度下,鰻草的莖節長、莖節數等顯著高於34%表面輻射照度。南極根枝草和狹葉波喜蕩草(Posidonia angustifoli)2種海草的最低表面輻照度均為24.7%(Dennisonet al,1993);鰻草生產力呈季節性動態變化,達到最大光合速率所需的飽和光照強度為100~ 200μmol photons/m·s(Leeet al,2005)。囙此,在人工環境下開展海草擴繁,營造海草生長所需的飽和光照強度條件,對於提高海草淨光合作用效率,新增海草植株密度具有重要作用。

1.2.3.3光週期

光週期通過影響植株體的生長,調節物質含量影響植株的生長發育。劉磊等(2005)研究發現,光照16 h時,可顯著提高植物體POD活性;光照24 h時,則顯著增加赤黴素(GA3)含量和降低脫落酸(ABA)含量(Woolleyet al,1972)。囙此,適宜的光照週期可提升植物的生理適應能力,促進植物生長。光週期還影響植物根系對營養元素的吸收,誘導與生長有關基因的表達(Torrey,1976任永哲等,2006)。

有關光週期對海草生理學特徵影響的報導較少。Dennison等(1985)在光飽和强度條件下於淺水區域進行實驗,結果表明,光照時長减少2.9~4.7 h,鰻草植株最大淨光合速率和葉片葉綠素含量提高至對照區植株(光照時間未發生變化)的2倍,而當新增光照時間3.4~ 4.6 h,其最大淨光合速率比對照區植株减少33%。

1.2.3.4 HCO3濃度

CO2作為光合作用的碳源,是植物生長與存活的關鍵限制因素。海水中含有大量以HCO3形式存在的無機碳(Ci),其濃度分別是海水CO2和CO32–的150倍和6倍(Beeret al,1980)。有研究表明,海草表皮質膜能促進CO2吸收的碳酸酐酶(CA)(Larkumet al,2017),海草在利用CO2進行光合作用之前,由碳酸酐酶在細胞外將HCO3脫水形成CO2,再以CO2的形式進入細胞(Olsenet al,2016)。另外,海草植株中質子的電化學梯度(ΔμH+/F)可促進對HCO3的直接攝取(Rubioet al,2017)。綜上所述,可以認為HCO3是作為海洋沉水植物進行光合作用的有效碳源。已有研究表明,大多數沉水植物的溶解無機碳(DIC)需求量的80%~90%來自於豐富的HCO3Palacioset al,2007)。與陸生植物類似,海水中溶解碳源濃度的升高能促進植株根莖的延長以及分株的生長,使無性繁殖能力增强,囙此,以HCO3為碳源探究海草生長繁殖機理至關重要。然而,當前對於沉水植物的研究主要局限於大氣CO2濃度變化對植株的影響,以HCO3為碳源探究海草促繁過程的報導較少。僅有的研究發現,以CO2為碳源通入水體,可有效促進鰻草光合速率的新增,根與根狀莖的地下光合氧釋放成比例新增(Palacioset al,2007Zimmermanet al,2017)。

1.2.3.5營養鹽

營養鹽是限制海草生長及生物量的關鍵因素。海草對營養鹽的吸收主要是通過逆電化學需能的化學過程(Fernandezet al,1999)。其中,對於NO3的吸收主要是通過Na+相偶聯的機制完成(Garcia-Sanchezet al,2000)。對NH4+的吸收則依託氨轉運蛋白完成,同時,從土壤吸收NH4+與根部對NH4+排放形成氨氮(NH4+-N)轉運體系的動態過程(Ludewig,2006)。植物體可直接從外界吸收無機磷,經轉運蛋白作用運輸至木質部,一部分在木質部得到積累,另一部分運輸至葉片供植株生長(Loughmanet al,1957)。Ferdie等(2004)研究表明,充足的氮源和磷源能够促進海草生長,新增海草側枝數量。此外,營養鹽新增還可促進海草根與葉片的N含量、地上與地下組織生物量的提高(Hanet al,2017)。不同海草種類,其適宜的營養鹽含量也不同。當水體中NO3+NO2含量達0.27~0.64μmol/L時,大洋波喜蕩草(Posidonia oceanica)生產力可達3.8~9.4g DW/m·d(Ruizet al,2003);水體NH4+濃度為0.1~6.0μmol/L時,日本鰻草生產力達到(1.7±0.2)g DW/m·d(Leeet al,2006);水體NH4+-N含量超過1.5μmol/L時,鰻草組織的穀氨醯合成酶活力提高2倍(Touchetteet al,2007);隨環境N濃度新增,萊氏二藥草(Halodule wright)葉片組織的葉綠素a含量隨之新增(Jr Hecket al,2006)。

1.2.3.6其他因數

底質是海草根部吸收營養物質的來源,囙此,底質的性質影響海草的生物量及分佈。有研究表明,當底質的泥沙重量比達到3:1時,鰻草表現出最佳的生長效果(Zhanget al,2015)。從分佈角度來看,鰻草較多生長於泥與泥沙底質,而叢生鰻草(Zostera caespitosa)大多生長在沙與礫石底質中(江鑫等,2012)。

重金屬對植物的影響主要是通過破壞葉綠體膜和類囊體膜的超微結構,使植物的光合效率降低。當海水Cd濃度> 8.9×10–6mol/L,海草在其中存留超過5 h,其葉綠素a、葉綠素b含量均明顯下降(Ralphet al,1998ab)。

綜上所述,海草適宜性生長因數是海草植株擴繁的理論基礎。對植株的科學定植則是提升海草植株擴繁效果的關鍵。

2海草定植效應提升理論與科技的研究進展

將人工培育的實生苗或幼苗移栽至有限的自然環境進行植株自然擴繁的過程,即為定植。通過選定適宜的定植間距和定植時間以及人工施肥等措施,促進定植苗種的生長和擴繁,實現擴繁效率高、生長速度快且節約成本的培育目標,即為定植效應。待定植苗生長至適宜移植的植株規格,即可開展後續的植株移植工作。

2.1定植間距

定植間距是影響植株生長與分株擴繁的關鍵因素,適宜的定植間距有助於植株對光照的充分利用,提升植株光合效率及擴繁效力。截至目前,對於沉水植物株距、行距與植株分株、生長等關係未見報導。有研究發現,海草植株的移植單元越大,植株成活率越高,但移植密度增高,植株間競爭力增大,則不利於植株擴繁(van Keulenet al,2003van Katwijket al,2009)。

2.2定植時間

定植時間與植株的生長發育行程息息相關。適宜的定植時間可有效促進植株的高效擴繁。多數研究針對物候變化進行定植,如邱廣龍等(2014)研究表明,幹季定植日本鰻草,其成活率高於雨季,在非生長季節(11月~翌年1月)定植日本鰻草,其成活率(86.3%)遠高於生長季節(4~10月);劉燕山等(2015)在4~9月分批次定植鰻草,結果發現,7~9月定植的鰻草植株成活率最高(100%)。

2.3施肥

底質施肥可有效改善植株生存所需的營養物質,保持土壤肥力,有助於提高植株生物量和植株存活率。Balestri等(2014)對小絲粉草(Cymodocea nodosa)進行海區底質施肥發現(肥料N:P=13:6,平均每株1 g),施肥區植株的生物量和密度均顯著高於自然區域植株;Sheridan等(1998)對萊氏二藥草進行海區施肥處理(肥料N:P= 14:14,平均每個草塊5.25 g)、Peralta等(2003)對鰻草進行海區施肥處理(肥料N:P = 1:4,30、50 mg N g /DW)發現,2種海草的植株密度與未施肥處理組相比均顯著增加;La Nafie等(2013)對卵葉喜鹽草和單脈二藥草(Halodule uninervis)進行海區施肥處理(肥料N:P:K=18:9:3,2 kg)發現,2種海草的植株高度均顯著高於未施肥海區的植株高度。由此可見,合適的肥料種類與正確的施肥管道可明顯促進海草植株的擴繁生長。

3問題與展望

海草植株移植修復法是現時應用最廣泛的一種海草床退化生境修復科技,但移植的供體植株均來自天然草床,對供體草床破壞性較大。囙此,海草植株移植修復策略的關鍵是用儘量少的供體植株,實現其高效人工擴繁,達到修復與保護雙贏的修復效果。當前,亟待解决的科學問題是如何利用海草植株尅隆繁殖這一特性,建立植株高效擴繁理論和科技,並通過適宜的陸海接力管道,達到最佳的海草供體植株擴繁效果。儘管現時有關海草水溫、鹽度、光照強度和營養鹽的適宜性研究已有較多報導,但針對光照週期、HCO3濃度、光質等環境要素對海草生長擴繁影響的研究還很少,系統的海草植株擴繁理論尚未建立。此外,有關定植間距、定植時間、施肥等海草植株定植理論和科技亦非常薄弱。

針對現時存在的主要問題,急需開展的重點工作主要包括:1)研究光照週期、HCO3濃度等關鍵環境因數對海草植株擴繁的促進作用,完善並建立海草植株擴繁理論;2)借鑒陸生經濟植物高效擴繁科技,研發低成本的海草植株人工擴繁平臺和設施;3)研究定植時間、密植、深耕、施肥等措施對植株擴繁的影響,形成植株定植效應提升理論和科技,實現植株擴繁的陸海接力和生態培育。最終形成海草植株擴繁與定植科技體系,為我國沿岸受損海草床生態系統的規模化修復提供科技支撐。

參考文獻
Abe M,Yokota K,Kurashima A,et al. Temperature characteristics in seed germination and growth ofZostera japonicaAscherson and Graebner from Ago Bay,Mie Prefecture,central Japan.Fisheries Science,2009,75(4):921-927
Adams JB,Bate GC.The ecological implications of tolerance to salinity byRuppia cirrhosa(Petagna)Grande andZostera capensisSetchell.Botanica Marina,1994,37(5):449-456
Balestri E,Cinelli F. Isolation of protoplasts from the seagrassPosidonia oceanica(L.)Delile.Aquatic Botany,1992,43(3):301-304DOI:10.1016/0304-3770(92)90074-S
Balestri E,Lardicci C. Effects of sediment fertilization and burial onCymodocea nodosatransplants: implications for seagrass restoration under a changing climate.Restoration Ecology,2014,22(2):240-247
Beer S,Eshel A,Waisel Y. Carbon metabolism in seagrasses.Journal of Experimental Botany,1980,31(123):1027-1033
Berns DM. Physiological responses ofThalassia testudinumandRuppia maritimato experimental salinity levels.Master′s Thesis of University of South Florida,2003,72
Biebl R,Mcroy CP. Plasmatic resistance and rate of respiration and photosynthesis ofZostera marinaat different salinities and temperatures.Marine Biology,1971,8(1):48-56
Busch KE,Golden RR,Parham TA,et al. Large-scaleZostera marina(Eelgrass)restoration in Chesapeake Bay,Maryland,USA. PartⅠ:A comparison of techniques and associated costs.Restoration Ecology,2010,18(4):490-500DOI:10.1111/j.1526-100X.2010.00690.x
Cui CJ,Liu YL,Wang N,et al. Isolation and culture of protoplasts in eelgrassZostera marina. Fishery Science,2014,33(8):508-511 [崔翠菊,劉延嶺,王娜,等.大葉藻原生質體的分離和培養.水產科學,2014,33(8):508-511DOI:10.3969/j.issn.1003-1111.2014.08.009]
Dawes C,Chan M,Chinn R,et al. Proximate composition,photosynthetic and respiratory responses of the seagrassHalophila engelmanniifrom Florida. Aquatic Botany,1987,27(2):195-201DOI:10.1016/0304-3770(87)90067-2
Deng WH,LüXF.Advances in studies on salt-tolerance mechanism ofZostera marina.Plant Physiology Journal,2018,54(5):718-724[鄧文浩,呂新芳.大葉藻耐鹽機理的研究進展.植物生理學報,2018,54(5):718-724]
Dennison WC,Alberte RS. Role of daily light period in the depth distribution ofZostera marina(Eelgrass).Marine Ecology Progress Series,1985,25(1):51-61
Dennison WC,Orth RJ,Moore KA,et al. Assessing water quality with submersed aquatic vegetation.Bioscience,1993,43(2):86-94
Drysdale FR,Barbour MG. Response of the marine angiospermPhyllospadix torreyito certain environmental variables: A preliminary study.Aquatic Botany,1975,1(2):97-106DOI:10.1016/0304-3770(75)90015-7
Duarte CM. Allometric scaling of seagrass form and productivity.Marine Ecology Progress Series,1991,77(2-3):289-300
Ferdie M,Fourqurean JW.Responses of seagrass communities to fertilization along a gradient of relative availability of nitrogen and phosphorus in a carbonate environment.Limnology and Oceanography,2004,49(6):2082-2094DOI:10.4319/lo.2004.49.6.2082
Fernández JA,García-Sánchez MJ,Felle HH.Physiological evidence for a proton pump and sodium exclusion mechanisms at the plasma membrane of the marine angiospermZostera marinaL.Journal of Experimental Botany,1999,50(341):1763-1768
Gao J,Yang S. Tissue culture and rapid propagation of submerged morcorphytePotamogeton crispusL.Plant Physiology Communications,2006,42(2):251-252[高建,楊劭.沉水植物菹草的組織培養和快速繁殖.植物生理學通訊,2006,42(2):251-252]
Gao YP,Fang JG,Tang W,et al. Seagrass meadow carbon sink and amplification of the carbon sink for eelgrass bed in Sanggou Bay.Progress in Fishery Sciences,2013,34(1):17-21[高亞平,方建光,唐望,等.桑溝灣大葉藻海草床生態系統碳匯擴增力的估算.漁業科學進展,2013,34(1):17-21 DOI:10.3969/j.issn.1000-7075.2013.01.003]
Garcia-Sanchez MJ,Jaime MP,Ramos A,et al. Sodium- dependent nitrate transport at the plasma membrane of leaf cells of the marine higher plantZostera marinaL.Plant Physiology,2000,122(3):879-885
Goodman JL,Moore KA,Dennison WC.Photosynthetic responses of eelgrass(Zostera marinaL.)to light and sediment sulfide in a shallow barrier island lagoon.Aquatic Botany,1995,50(1):37-47DOI:10.1016/0304-3770(94)00444-Q
Han Q,Soissons LM,Liu D,et al. Individual and population indicators ofZostera japonicarespond quickly to experimental addition of sediment-nutrient and organic matter.Marine Pollution Bulletin,2017,114(1):201-209
Ibarra-Obando SE,Huerta-Tamayo R. Blade production ofZostera marinaL.during the summer-autumn period on the Pacific coast of Mexico.Aquatic Botany,1987,28(3):301-315
Jiang X,Pan JH,Han HW,et al. Effects of substrate and water depth on distribution of sea weedsZostera marinaandZ. caespitosa. Journal of Dalian Ocean University.,2012,27(2):101-104 [江鑫,潘金華,韓厚偉,等.底質與水深對大葉藻和叢生大葉藻分佈的影響.大連海洋大學學報,2012,27(2):101-104DOI:10.3969/j.issn.1000-9957.2012.02.002]
Jr Heck KL,Valentine JF,Pennock JR,et al. Effects of nutrient enrichment and grazing on shoalgrassHalodule wrightiiand its epiphytes: Results of a field experiment.Marine Ecology Progress Series,2006,326(1):145-156DOI:10.3354/meps326145
Kahn AE,Durako MJ.Thalassia testudinumseedling responses to changes in salinity and nitrogen levels.Journal of Experimental Marine Biology and Ecology,2006,335(1):1-12DOI:10.1016/j.jembe.2006.02.011
Kaldy JE. Production ecology of the non-indigenous seagrass,dwarf eelgrass(Zostera japonicaAscher.and Graeb.),in a Pacific Northwest Estuary,USA. Hydrobiologia,2006,553(1):201-217DOI:10.1007/s10750-005-5764-z
Kerr EA,Strother S. Effects of irrdiance,temperature and salinity on photosynthesis ofZostera muelleri. Aquatic Botany,1985,23(2):177-183DOI:10.1016/0304-3770(85)90063-4
Kong FN,Zhou Y,Sun PP,et al. Generation and analysis of expressed sequence tags from the salt-tolerant eelgrass species,Zostera marina. Acta Oceanologica Sinica,2013,32(8):68-78DOI:10.1007/s13131-013-0343-z
Lamb JB,Water JAJM,Bourne DG,et al. Seagrass ecosystems reduce exposure to bacterial pathogens of humans,fishes,and invertebrates.Science,2017,355(6326):731-733DOI:10.1126/science.aal1956
La Nafie YA,de Los Santos CB,Brun FG,et al. Biomechanical response of two fast- growing tropical seagrass species subjected to in situ shading and sediment fertilization.Journal of Experimental Marine Biology and Ecology,2013,446: 186-193DOI:10.1016/j.jembe.2013.05.020
Larkum AWD,Davey PA,Kuo J,et al. Carbon-concentrating mechanisms in seagrasses.Journal of Experimental Botany,2017,68(14):3773-3784
Lee K,Park SR,Kim J. Production dynamics of the eelgrass,Zostera marinain two bay systems on the south coast of the Korean peninsula.Marine Biology,2005,147(5):1091-1108DOI:10.1007/s00227-005-0011-8
Lee K,Park SR,Kim YK.Effects of irradiance,temperature,and nutrients on growth dynamics of seagrasses: A review.Journal of Experimental Marine Biology and Ecology,2007,350(1):144-175DOI:10.1016/j.jembe.2007.06.016
Lee SY,Kim JB,Lee SM. Temporal dynamics of subtidalZostera marinaand intertidalZostera japonicaon the southern coast of Korea.Marine Ecology,2006,27(2):133-144
Li LL,Zheng FY,Liu XQ,et al. Sexual reproductive characteristics ofZostera marinaL.in Shuangdao Bay.Chinese Journal of Ecology,2015,34(10):2866-2872[李樂樂,鄭鳳英,劉雪芹,等.雙島灣大葉藻的有性生殖特徵.生態學雜誌,2015,34(10):2866-2872]
Li XB,Liu YD. Studies on the conditions of water hyacinth tissue culture in vitro.Journal of Central China Normal University,1997,31(3):332-335[李學寶,劉永定.鳳眼蓮組織培養的研究.華中師範大學學報,1997,31(3):332-335]
Li WT,Kim JH,Park JI,et al. Assessing establishment success ofZostera marinatransplants through measurements of shoot morphology and growth.Estuarine Coastal and Shelf Science,2010,88(3):377-384
Liu L,Liu SQ,Xu L,et al. Study on the change of nitrogen metabolism and peroxidase activity in onions during different photoperiod and vernalization.Acta Agriculture Boreali- occidentalis Sinica,2005,14(6):90-95 [劉磊,劉世琦,許莉,等.光週期及春化處理對洋葱蛋白質合成代謝與POD活性的影響.西北農業學報,2005,14(6):90-95DOI:10.3969/j.issn.1004-1389.2005.06.021]
Liu YL,Li XJ,Cui CJ,et al. Study on the disinfection method for tissue culture ofZostera marina. Journal of Agriculture,2013,3(3):54-56 [劉延嶺,李曉捷,崔翠菊,等.大葉藻組織培養中外植體消毒方法的研究.農學學報,2013,3(3):54-56DOI:10.3969/j.issn.1007-7774.2013.03.012]
Liu YS,Guo D,Zhang PD,et al. Assessing establishment success and suitability analysis ofZostera marinatransplants using staple method in northern lagoons.Chinese Journal of Plant Ecology,2015,39(2):176-183[劉燕山,郭棟,張沛東,等.北方澙湖大葉藻植株枚訂移植法的效果評估與適宜性分析.植物生態學報,2015,39(2):176-183]
Lopez Y,Royo C,Pergent G,et al. The seagrassPosidonia oceanicaas indicator of coastal water quality: Experimental intercalibration of classification systems.Ecological Indicators,2011,11(2):557-563DOI:10.1016/j.ecolind.2010.07.012
Loughman BC,Russell RS. The absorption and utilization of phosphate by young barley plants.Journal of Experimental Botany,1957,8(2):280-293
Ludewig U. Ion transport versus gas conduction: Function of AMT/Rh-type proteins.Transfusion Clinique et Biologique Journal De La SociétéFrançaise De Transfusion Sanguine,2006,13(1):111-116DOI:10.1016/j.tracli.2006.02.012
MarbàN,Duarte CM. Scaling of ramet size and spacing in seagrasses: Implications for stand development.Aquatic Botany,2003,77(2):87-98DOI:10.1016/S0304-3770(03)00079-2
Martins I,Neto JM,Fontes MG,et al. Seasonal variation in short-term survival ofZostera noltiitransplants in a declining meadow in Portugal.Aquatic Botany,2005,82(2):132-142DOI:10.1016/j.aquabot.2005.03.006
Masini RJ,Manning CR. The photosynthetic responses to irradiance and temperature of four meadow-forming seagrasses.Aquatic Botany,1997,58(1):21-36DOI:10.1016/S0304-3770(97)00008-9
Mazzella L,Alberte RS. Light adaptation and the role of autotrophic epiphytes in primary production of the temperate seagrass,Zostera marinaL. Journal of Experimental Marine Biology and Ecology,1986,100(1-3):165-180DOI:10.1016/0022-0981(86)90161-9
Mcleod E,Chmura GL,Bouillon S,et al. A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment,2011,9(10):552-560DOI:10.1890/110004
Nejrup LB,Pedersen MF. Effects of salinity and water temperature on the ecological performance ofZostera marina. Aquatic Botany,2008,88(3):239-246DOI:10.1016/j.aquabot.2007.10.006
Ochieng CA,Short FT,Walker DI.Photosynthetic and morphological responses of eelgrass(Zostera marinaL.)to a gradient of light conditions.Journal of Experimental Marine Biology and Ecology,2010,382(2):117-124DOI:10.1016/j.jembe.2009.11.007
Olsen JL,RouzéP,Verhelst B,et al. The genome of the seagrassZostera marinareveals angiosperm adaptation to the sea.Nature,2016,530(7590):331-335
Palacios S,Zimmerman R. Response of eelgrassZostera marinato CO2enrichment: Possible impacts of climate change and potential for remediation of coastal habitats.Marine Ecology Progress Series,2007,344: 1-13DOI:10.3354/meps07084
Peralta G,Bouma TJ,van Soelen J,et al. On the use of sediment fertilization for seagrass restoration: A mesocosm study onZostera marinaL. Aquatic Botany,2003,75(2):95-110DOI:10.1016/S0304-3770(02)00168-7
Qiu GL. Restorations of the intertidal seagrass beds.Beijing: China Forestry Publishing House,2014 [邱廣龍.潮間帶海草床的生態恢復.北京:中國林業出版社,2014]
Ralph PJ.Photosynthetic responses ofHalophila ovalis(R. Br.)Hook.f. to osmotic stress.Journal of Experimental Marine Biology and Ecology,1998a,227(2):203-220
Ralph PJ,Burchett MD. Photosynthetic response ofHalophila ovalisto heavy metal stress.Environmental Pollution,1998b,103(1):91-101
Ren YZ,Chen YH,Ku LX,et al. Response to photoperiodical variation and the clone of a photoperiod-related gene in Maize.Scientia Agricultura Sinica,2006,39(7):1487-1494 [任永哲,陳彥惠,庫麗霞,等.玉米光週期反應及一個相關基因的尅隆.中國農業科學,2006,39(7):1487-1494DOI:10.3321/j.issn:0578-1752.2006.07.026]
Robertson AI,Mann KH. Disturbance by ice and life-history adaptations of the seagrassZostera marina.Marine Biology,1984,80(2):131-141
Rubio L,García D,García-Sánchez MJ,et al. Direct uptake of HCO3in the marine angiospermPosidonia oceanica(L.)Delile driven by a plasma membrane H+economy.Plant,Cell and Environment,2017,40(11):2820-2830DOI:10.1111/pce.13057
Ruiz JM,Romero J. Effects of disturbances caused by coastal constructions on spatial structure,growth dynamics and photosynthesis of the seagrassPosidonia oceanica. Marine Pollution Bulletin,2003,46(12):1523-1533DOI:10.1016/j.marpolbul.2003.08.021
Sharkey TD,Raschke K. Effect of light quality on stomatal opening in leaves ofXanthium strumariumL. Plant Physiology,1981,68(5):1170-1174DOI:10.1104/pp.68.5.1170
Sheridan P,McMahan G,Hammerstorm K,et al. Factors affecting restoration ofHalodule wrightiito Galveston Bay,Texas.Restoration Ecology,1998,6(2):144-158DOI:10.1111/j.1526-100X.1998.00625.x
Short F,Carruthers T,Dennison W,et al. Global seagrass distribution and diversity: A bioregional model.Journal of Experimental Marine Biology and Ecology,2007,350(1-2):3-20DOI:10.1016/j.jembe.2007.06.012
Torquemada YF,Durako MJ,Lizaso JLS.Effects of salinity and possible interactions with temperature and pH on growth and photosynthesis ofHalophila johnsoniiEiseman.Marine Biology,2005,148(2):251-260DOI:10.1007/s00227-005-0075-5
Torrey JG.Root hormones and pant growth.Annual Review of Plant Physiology,1976,27(1):435-459DOI:10.1146/annurev.pp.27.060176.002251
Touchette BW,Burkholder JAM.Carbon and nitrogen metabolism in the seagrass,Zostera marinaL.:Environmental control of enzymes involved in carbon allocation and nitrogen assimilation.Journal of Experimental Marine Biology and Ecology,2007,350(1):216-233
van Katwijk MM,Bos AR,de Jonge VN,et al. Guidelines for seagrass restoration: importance of habitat selection and donor population,spreading of risks,and ecosystem engineering effects.Marine Pollution Bulletin,2009,58(2):179-188DOI:10.1016/j.marpolbul.2008.09.028
van Keulen M,Paling EI,Walker CJ.Effect of planting unit size and sediment stabilization on seagrass transplants in western Australia.Restoration Ecology,2003,11(1):50-55
Walker DI.Correlations between salinity and growth of the seagrassAmphibolis antarctica(Labill.)Sonder & Aschers.In Shark Bay,Western Australia,using a new method for measuring production rate.Aquatic Botany,1985,23(1):13-26DOI:10.1016/0304-3770(85)90017-8
Walker DI,McComb AJ.Seasonal variation in the production,biomass and nutrient status ofAmphibolis antarctica(Labill.)Sonder ex Aschers.andPosidonia australisHook.f. in Shark Bay,Western Australia.Aquatic Botany,1988,31(3):259-275
Watanabe M,Nakaoka M,Mukai H. Seasonal variation in vegetative growth and production of the endemic Japanese seagrassZostera asiatica:A comparison with sympatricZostera marina. Botanica Marina,2005,48(4):266-273DOI:10.1515/BOT.2005.036
Waycotta M,Duarteb CM,Carruthersc TJB,et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems.Proceedings of the National Academy of Sciences of the United States of America,2009,106(30):12377-12381DOI:10.1073/pnas.0905620106
Wilhelm C,Krámer P,Wild A. Effect of different light qualities on the ultrastructure,thylakoid membrane composition and assimilation metabolism ofChlorella fusca.Physiologia Plantarum,2010,64(3):359-364
Woolley DJ,Wareing PF. The interaction between growth promoters in apical dominance.New Phytologist,1972,71(5):781-793DOI:10.1111/j.1469-8137.1972.tb01957.x
Wu YL,Gao YP,LüXN,et al. Ecological contribution ofRuditapes philippinarumin the seagrass meadow of Sanggou Bay.Progress in Fishery Sciences,2018,39(6):126-133[吳亞林,高亞平,呂旭寧,等.桑溝灣楮島大葉藻床區域菲律賓蛤仔的生態貢獻.漁業科學進展,2018,39(6):126-133]
Xu DQ,Gao W,Ruan J. Effects of light quality on plant growth and development.Plant Physiology Journal.,2015,51(8):1217-1234[許大全,高偉,阮軍.光質對植物生長發育的影響.植物生理學報,2015,51(8):1217-1234]
Ye CJ,Zhao KF.Advances in the study on the marine higher plant eelgrass(Zostera marinaL.)and its adaptation.Chinese Bulletin of Botany,2002,19(2):184-193 [葉春江,趙可夫.高等植物大葉藻研究進展及其對海洋沉水生活的適應.植物學通報,2002,19(2):184-193DOI:10.3969/j.issn.1674-3466.2002.02.008]
Yu H. Studies on morphological characters and tissue culture of eelgrass(Zostera marinaL.).Master's Thesis of Liaoning Normal University,2008 [於函.大葉藻形態學及組織培養的研究.遼寧師範大學碩士研究生學位論文,2008]
Yuan YD,Song ZC,Guo CL,et al. Morphological characters and microstructure ofZostera marina. Transactions of Oceanology and Limnology,2010(3):73-78 [原永黨,宋宗誠,郭長祿,等.大葉藻形態特徵與顯微結構.海洋湖沼通報,2010(3):73-78DOI:10.3969/j.issn.1003-6482.2010.03.012]
Zhang Q,Liu J,Zhang P,et al. Effect of silt and clay percentage in sediment on the survival and growth of eelgrassZostera marina:transplantation experiment in Swan Lake on the eastern coast of Shandong Peninsula,China.Aquatic Botany,2015,122: 15-19DOI:10.1016/j.aquabot.2015.01.001
Zieman JC.Seasonal variation of turtle grass,Thalassia testudinumKönig,with reference to temperature and salinity effects.Aquatic Botany,1975,1: 107-123DOI:10.1016/0304-3770(75)90016-9
Zimmerman RC,Hill VJ,Jinuntuya M. Experimental impacts of climate warming and ocean carbonation on eelgrassZostera marina.Marine Ecology Progress Series,2017,566(27):1-15