Abstract

With recent advances in photoredox chemistry,avariety of methods for generating carbon radicals have emerged.This review high lights recent approaches for radical generation utilizing zirconocene(III),aspecies infrequently employed in organic syntheses.Of particular interest are methods employing visible light irradiation,which induce C-Zr bond homolysis of alkyl zirconium species or activate a photoredox catalyst to reduce zirconocene(IV)。

Recent advances in photoredox chemistry have driven significant development of various methods for generating carbon radicals.This review high lights recent approaches utilizing zirconocene(III),infrequently employed in organic syntheses.Notably,methods employing visible light irradiation to induce C-Zr bond homolysis or to excite a photoredox catalyst to reduce zirconocene(IV)。

Recent advances in photoredox chemistry have driven significant development of various methods for generating carbon radicals.This review high lights recent approaches utilizing zirconocene(III),infrequently employed in organic syntheses.Notably,methods employing visible light irradiation to induce C-Zr bond homolysis or to excite a photoredox catalyst to reduce zirconocene(IV)。

photoredox catalysis单击功能区上,单电子变压器单击功能区上,zirconocene

1.Introduction

There has been significant progress in developing methodologies for radical species,especially for carbon-centered radicals。1个The generation of such radicals frequently necessitates tailored radical precursors to facilitate their production.Consequently,these precursors often exhibit high reactivity,requiring careful handling or case-by-case preparation prior to use.In contrast,stable and robust compounds are difficult to dixize,duce, and thus have been less frequently utilized as radical precursors.The development of approaches to generate carbon-centered radicals from these compounder under mild conditions holds significant promise for accelerating innovation in the field of radical chemistry。

Ti(III)has been recognized as a valuable reagent in the generation of carbon radicals。2-5Despite a significant resurgence in Ti(III)-catalyzed radical reactions over the past decade,Zr(III)has received considerably less attention。6-8(III)species,these methods have found use in synthetic organic chemistry。9单击功能区上,10Due to its high ly reducing nature,Zr(III)(E=1.85 V vs SCE(Cp2ZrCl)211)has been employed as a reductant。To this end,pinacol couplings with a stoichiometric12or a catalytic amount13of Zr(III)have been reported(Fig。1a)。热回收率2ZrCl2strong reductants such as K metal14and Na(Hg),15单击功能区上,16thereby limiting functional group tolerance.The Oshima group introduced an alternative method for generating Zr(III)by hydrogen atom transfer(HAT)from Schwartz reagent(Cp2ZrHCl)。第十七节:单击功能区上,18The seminal workby the Oshima group underscored the vast potential of Zr(III)in a range of dehalogenative radical transformations。第十七节:Furthermore,several methods for generating Zr(III)have been long established despite their limited application in organic synthesis。These methods include the elimination of cyclopentadienyl(Cp)radicals through direct excitation of Cp2ZrCl2单击功能区上,19-22and homolytic C-Zr bond cleavage via photolysis of alkyl zirconocenes。23

a)Representative reactions using Zr(III)。b)Main approaches to generate Zr(III)with visible light。
Fig.1。

a)Representative reactions using Zr(III)。b)Main approaches to generate Zr(III)with visible light。

In recent years,significant progress in photoredox chemistry has greatly influenced radical chemistry,even allowing for developments in Zr(III)chemistry。This review focues on recent studies exploring the utilization of Zr(III)inorganic synthesis to generate carbon radicals under visible light irradiation。These reactions typically employ two primary methodologies for Zr(III)generation:hydrofunctionalization of alkenes with Schwartz reagent,followed by photolysis of the resultant C-Zr bond,and the reduction of Zr(IV)to Zr(III)by excited photocatalysst(Fig。1b)。This review discusses recent reports and presents our own contributions to this field。

2.C-Zr bond photolysis of alkyl zirconocene

While C–Zr bond homolysis has long been known as a method to generate carbon radicals,the Brasholz group has recently applied this process to photoredox catalysis。第二十四节:They have developed a visible light-mediated three-component radical[4+2]cyclization-allylation reaction utilizing allyl zirconocenes,resulting in the synthesis of various allylated hexahydrocarbazoles with high diastereoselectivity(Fig。2a)。Furthermore,methallylated and prenylated products were also obtained.The authors proposed a mechanism beginning with the reduction of an alkyl iodide by an excited photocatalyst to afford alkyl radical(Fig。2b)。The sequential intermolecular and intramolecular radical addition furnishes tertiary radical,which is combined with allyl radical ejected from allyl zirconium via photolysis.This process also produces Zr(III)to regenerate the photocatalys by the reduction of Ir(IV)。

a)Three-component radical[4+2]cyclization-allylation reaction。b)Proposed mechanism。
Fig.2。

a)Three-component radical[4+2]cyclization-allylation reaction。b)Proposed mechanism。

In2020,Qi and co-workers reported a Ni-calyzed cross-coupling reaction with alkyl zirconocene(Fig。3a)。25The alkyl zirconocene was prepared from alkene and Schwartz reagent,which is further elaborated to the corresponding coupling product with organic halides under visible light irradiation.Various organic halides possessing C(sp3)–X,C(sp2)–X,and C(sp)–X bonds are applicable in these reaction conditions。With internal alkenes,the cross-coupling occurred at the terminal sites through a chain-walking process.The proposed mechanism for this reaction involves hydrozirconation of the alkene with Schwartz reagent to form the alkyl zirconium species(Fig。3b)。Subsequent C-Zr bond homolysis of the resultant alkyl zirconium occurs under visible light irradiation,furnishing the alkyl radical.Zr(III)derived from alkyl zirconium reduces Ni(II)to Ni(0),allowing for the reaction with the alkyl radical,yielding the alkyl–Ni(I)spies。Then,the oxidative addition of halides to Ni(I)delivers Ni(III)via either a radical-mediated path with an alkyl halide or a concerted pathway with aryl,alkenyl,oralkynyl halides.Finally,the reductive elimination affords the desired coupling products with Ni)to reproduce Ni(0)。

a)Ni-catalyzed cross-coupling of alkyl zirconium and organic halides.b)Proposed mechanism。
Fig.3。

a)Ni-catalyzed cross-coupling of alkyl zirconium and organic halides.b)Proposed mechanism。

Following this report,the same group has developed a cross-coupling reaction betweengem-borazirconocene alkanes and aryl halides(Fig。4a)。26Utilizing the Bpin group as directing group for hydrozirconation,reaction of boryl alkene and Schwartz reagent selectively produces thegem-borazirconocene alkane。Additionally,gem-borazirconocene alkanes can be prepared from terminal alkenes with a Bpin group at the distal position。Moreover,by adjusting the reaction temperature and time,this protocol enables the selective synthesis of branched or linear alkylboronate derivatives.Specically,conducting the reaction at 110ⅼ°C affords the thermodynamically favorablegem-borazirconocene alkane,while lower temperatures produce the kinetically favorable linear alkyl zirconium.Furthermore,the group reported an enantioselective variant of the cross-coupling reaction usinggem-borazirconocene alkanes and chiral diamine ligands(Fig。4b)。27垃圾处理窗,垃圾处理窗L1单击功能区上,which has two Me groups on the nitrogen atoms.Conversely,the alkylation occurs in a high ly enantioselective manner usingL2单击功能区上,which uses Et groups instead of Me groups。

a)Cross-coupling reaction of gem-borazirconocene alkanes(b)enantioselective cross-coupling reaction。
Fig.4。

a)Cross-coupling reaction ofgem-borazirconocene alkanes(b)enantioselective cross-coupling reaction。

Additionally,Mitsunuma and Kanai28reported a Cr-catalyzed alkylation of aldehydes(Fig。5a)。Schwartz reagent,CrCl2,and alkenes,visible light irradiation of aldehydes yields the corresponding alkylated product(Fig。5b)。This reaction is also applicable to a ketone,albeit in a lower yield.Furthermore,with chiral ligandL3,the reaction proceeds in an antioselective manner.The proposed catalytic cycle commenced with hydrozirconation of alkene.The formed alkyl zirconium undergoes C-Zr bond cleavage upon visible light irradiation.The resultant alkyl radical attacks Cr(II)to form the alkyl chromiecum,which further reacts with the aldehyde.Ligand exchange between the resulting chromium alkoxide and zirconocene furnishes zirconocene alkoxide and Cr(III)salt。Finally,the Zr(III)formed in C-Zr photolysis reduces Cr(III)to regenerate Cr(II)。

a)Cr-catalyzed alkylation of aldehyde.b)Proposed reaction mechanism。
Fig.5。

a)Cr-catalyzed alkylation of aldehyde.b)Proposed reaction mechanism。

张紧和连接杆29reported a difluoroalkylation of alkenes using difluorohaloalkanes(Fig。6个)。This reaction was applicable to a variety of alkyl halides and alkenes.Notably,the difluoroalkyl radical is generated by Zr(III)species resulting from the photolysis of alkyl zirconium。The resultant difluoroalkyl radical can reacts with both terminal and internal olefins。

Difluoroalkylation of alkene using alkyl zirconocene。
Fig.6。

Difluoroalkylation of alkene using alkyl zirconocene。

3.Reduction of Zr(IV)using photoredox catalysis

Although the above approaches generate Zr(III)through the photolysis of the C–Zr bond,Zr(III)can also be obtained with a redox approach。In2022,our group developed aregioselective ring opening of epoxides using zirconocene and photoredox catalysis(Fig。7a)。30Visible light irradiation of an epoxide in the presence of zirconocene,photoredox catalyst,thiourea,and1,4-cyclohexadiene(CHD)results in C-O bond cleavage。The reaction of mono-,di-,and tri-substituted epoxides preferentially furnished the more substituted alcohol.It is noteworthy that thiourea as anessential additive effectively influences the regioselectivity,and no regioselectivity was observed without thiourea.This Zr-catalyzed ring opening results in reversed regioselectivity compared to Ti-catalyzed ring opening,leading to less substituted alcohols(Fig。7b)。2-5单击功能区上,31单击功能区上,32Thus,our method complements the traditional Ti-catalyzed reaction.Moreover,aradical clock experiment using acyclopropyl epoxide to afford the allylic alcohol supports that C-Obond cleavage proceeds through aradical mechanism(Fig。7c)。Additionally,the resultant alkyl radical can be utilized in a Giese-type addition and a benzylidene acetal formation via1,5-HAT。

a)Ring opening of epoxides using zirconocene and photoredox catalysis.b)Comparison of regioselectivity.c)Radical clock experiments and other functionalizations。
Fig.7。

a)Ring opening of epoxides using zirconocene and photoredox catalysis.b)Comparison of regioselectivity.c)Radical clock experiments and other functionalizations。

Our proposed reaction mechanism is depicted in Fig。8个.Firstly,an excited photocatalyst Ir(III)*(Ir(4-MeOppy)3单击功能区上,E1/2Ir(IV)/Ir(III)*=-1.95 V vs SCE)reduces Zr(IV)to Zr(III)。33The coordination of epoxides to the resultant Zr(III)facilitates the C-O bond cleavage。The resulting carbon radical abstracts ahydrogen atom from1,4-CHD to give the zirconocene alkoxide,followed by oxidation of the resultant CHD radical by Ir(IV)to reproduce Ir(III)。Then,the CHD cation works asa Brønsted acid to protonate the zirconocene alkoxide,leading to the desired alcohol and Zr(IV)with benzene through ligand exchange。

Proposed reaction mechanism。
Fig.8。

Proposed reaction mechanism。

Additionally,we also reported aregioselective ring opening of oxetanes using zirconocene and photoredox catalysis(Fig。9)。34The reaction proceedsviaaless stable radical to afford more substituted alcohol selectively.Similar to the ring opening of epoxides,this ring opening of oxetane exhibited reverse regioselectivity to Ti-catalyzed reactions。35Furthermore,the protocol could be applied to benzylidene acetal formation。

Ring opening of oxetanes using zirconocene and photoredox catalysis。
Fig.9。

Ring opening of oxetanes using zirconocene and photoredox catalysis。

The developed zirconocene and photoredox catalysis was also applicable to a chlorine atom transfer reaction of alkyl chlorides(Fig。10)。36The use of alkyl chlorides has largely been restricted to activated alkyl chlorides such as benzyl chlorides,α-chloro carbonyls,and trichloromethyl alkanes in classical radical chemistry.Instead,this protocol accommodated primary,secondary, and tertiary unactivated alkyl chlorides for the generation of carbon-centered radicals.In the presence of zirconocene,photoredox catalyst,thiourea,and H-atom donor,the visible light irradiation to alkyl chlorides affords the corresponding hydrogenated compounds.When the diboron agwament of nor, the corresponding borylated product was obtained。

Chlorine atom transfer reaction using zirconocene and photoredox catalysis。
Fig.10。

Chlorine atom transfer reaction using zirconocene and photoredox catalysis。

We next explored the plausibility of our proposed chlorine atom transfer mechanism through competitive experiments using a1:1 mixture of primary and secondary alkyl chlorides,as well asa1:1 mixture of secondary and tertiary alkyl chlorides(Fig。11)。Our experimental results revealed that the secondary chloride exhibited higher reactivity than the primary chloride,and the tertiary chloride displayed higher reactivity than the secondary chloride.Thus,the rate of C-Cl bond cleavage follows the order of tertiary>secondary>primary.This trend is consistent with observations in other halogen atom transfer(XAT)reactions,37which underscores the XAT nature of our protocol。

Competition experiments。
Fig.11。

Competition experiments。

4.概要和outlook

The exploration of Zr(III)in radical generation marks a promising avenue for future radical-mediated synthesis。Recent advances in photoredox chemistry have led to new opportunities for utilizing Zr(III)。Further investigations toward diverse methodologies for utilizing Zr(III)are anticipated,with a focus on expanding the type of reactions and exploring new strategies for preparing Zr(III)under visible light irradiation。The development of catalytic systems enabling efficient and selective Zr(III)-mediated radical transformations holds great potential for advancing synthetic organic chemistry。In conclusion,the methods high lighted in this review showcase the versatility and potential of Zr(III)-mediated radical chemistry,offering novel synthetic pathways for constructing complex molecularchitectures.Continued research efforts in this area are poised to yield innovative solutions to longstanding challenges in organic synthesis。

Funding

This work was supported by JSPS KAKENHi Grant Nos.JP21H05213(Digi-TOS)(to J.Y.),JP20K15290(to E.O.),Sumitomo Foundation(to E.O.),Daiichi Kigenso Kagaku Kogyo(to E.O.)。This work was partly supported by JST ERATO Grant No.JPMJER1901(to J.Y.)。

参考,参考

1个

S。
 
Crespi
单击功能区上,
 
Fagnoni
单击功能区上,
Chem.Rev。
 
2020
单击功能区上,
120
单击功能区上,
9790
https://doi.org/10.1021/acs.chemrev.0c00278

2

S.P。
 
摩托车,摩托车
单击功能区上,
D。
 
导向,导向
单击功能区上,
A.G。
 
Campaéa
单击功能区上,
L。
 
Alvarez De Cienfuegos
单击功能区上,
J。
 
Justica
单击功能区上,
J.M。
 
Cuerva
单击功能区上,
Org.Chem.Front。
 
2014
单击功能区上,
1个
单击功能区上,
15
https://doi.org/10.1039/C3QO00024A

3

 
Castro Rodríguez
单击功能区上,
I。
 
Rodríguez García
单击功能区上,
R.N。
 
Rodríguez Maecker
单击功能区上,
L。
 
Pozo Morales
单击功能区上,
J.E。
 
Oltra
单击功能区上,
A。
 
Rosales Martínez
单击功能区上,
Org.Process Res.Dev
 
2017
单击功能区上,
21
单击功能区上,
911
https://doi.org/10.1021/acs.oprd.7b00098

4个

T。
 
cCallum
单击功能区上,
X。
 
Wu
单击功能区上,
S。
 
Lin
单击功能区上,
J.Org.Chem。
 
2019
单击功能区上,
84
单击功能区上,
14369
https://doi.org/10.1021/acs.joc.9b02465

5

X。
 
Wu
单击功能区上,
Y。
 
变更,变更
单击功能区上,
S。
 
Lin
单击功能区上,
Chem
 
2022
单击功能区上,
8个
单击功能区上,
1805
https://doi.org/10.1016/j.chempr.2022.06.05

6个

E。
 
Negishi
单击功能区上,
T。
 
Takahashi
单击功能区上,
Acc.Chem.Res。
 
1994
单击功能区上,
27
单击功能区上,
124
https://doi.org/10.1021/ar00041a002

7

E。
 
Negishi
单击功能区上,
S。
 
Huo
单击功能区上,Synthesis and reactivity of zirconocene derivatives.In:
Titanium and Zirconium in Organic Synthesis
单击功能区上,
I。
 
Marek
,ed。
Wiley-VCH Verlag GmbH&Co.KGaA
单击功能区上,
Weinheim,Germany
单击功能区上,
2002
打开;pp。
1个
49

8个

K。
 
Hyodo
单击功能区上,
Y。
 
Nishihara
单击功能区上,
J.Syn.Org.Chem.Jpn
 
2016
单击功能区上,
74
单击功能区上,
792
https://doi.org/10.5059/yukigoseikyokaishi.792

9

I.E。
 
Nifant’ev
单击功能区上,
A.A。
 
Vinogradov
单击功能区上,
A.A。
 
Vinogradov
单击功能区上,
A.V。
 
Churakov
单击功能区上,
P.V。
 
Ivchenko
单击功能区上,
Mendeleev Commun
 
2018
单击功能区上,
28
单击功能区上,
467
https://doi.org/10.1016/j.mencom.2018.09.004

10

A。
 
Umehara
单击功能区上,
Y。
 
Kishi
单击功能区上,
Chem.Lett。
 
2019
单击功能区上,
48
单击功能区上,
947
https://doi.org/10.1246/cl.190405

11

C.E。
 
Zachmanoglou
单击功能区上,
A。
 
Docrat
单击功能区上,
B.M。
 
布里奇水
单击功能区上,
G。
 
Parkin
单击功能区上,
C.G。
 
断开,断开
单击功能区上,
J.E。
 
Bercaw
单击功能区上,
C.N。
 
Jardine
单击功能区上,
 
Lyall
单击功能区上,
J.C。
 
Green
单击功能区上,
J.B。
 
Keister
单击功能区上,
J.Am.Chem.Soc。
 
2002
单击功能区上,
124
单击功能区上,
9525
https://doi.org/10.1021/ja0236y

12

.C。
 
Barden
单击功能区上,
J。
 
Schwartz
单击功能区上,
J.Org.Chem。
 
1997
单击功能区上,
62
单击功能区上,
7520
https://doi.org/10.1021/jo970974i

13

 
Lakshmi Kantam
单击功能区上,
K。
 
Aziz
单击功能区上,
P.R。
 
Likhar
单击功能区上,
Synth.Commun。
 
2006
单击功能区上,
36
单击功能区上,
1437
https://doi.org/10.1080/00397910500522165

14

S。
 
Schäfer
单击功能区上,
H。
 
Bauer
单击功能区上,
J。
 
Becker
单击功能区上,
Y。
 
太阳,太阳
单击功能区上,
H。
 
Sitzmann
单击功能区上,
Eur.J.Inorg.Chem。
 
2013
单击功能区上,
2013
单击功能区上,
5694
https://doi.org/10.1002/ejic.201300885

15

.D。
 
Fryzuk
单击功能区上,
 
ylvaganam
单击功能区上,
.J。
 
Zaworotko
单击功能区上,
L.R。
 
MacGillivray
单击功能区上,
J.Am.Chem.Soc。
 
1993
单击功能区上,
115
单击功能区上,
10360
https://doi.org/10.1021/ja00075a062

16

T.N。
 
Lenton
单击功能区上,
J.E。
 
Bercaw
单击功能区上,
V.N。
 
Panchenko
单击功能区上,
V.A。
 
Zakharov
单击功能区上,
D.E。
 
Babushkin
单击功能区上,
I.E。
 
Soshnikov
单击功能区上,
E.P。
 
Talsi
单击功能区上,
H.H。
 
Brintzinger
单击功能区上,
J.Am.Chem.Soc。
 
2013
单击功能区上,
135
单击功能区上,
10710
https://doi.org/10.1021/ja403170u

第十七节:

K。
 
Fujita
单击功能区上,
T。
 
Nakamura
单击功能区上,
H。
 
Yorimitsu
单击功能区上,
K。
 
Oshima
单击功能区上,
J.Am.Chem.Soc。
 
2001
单击功能区上,
123
单击功能区上,
3137
https://doi.org/10.1021/ja0032428

18

K。
 
Fujita
单击功能区上,
H。
 
Yorimitsu
单击功能区上,
K。
 
Oshima
单击功能区上,
Bull.Chem.Soc.Jpn。
 
2004
单击功能区上,
77
单击功能区上,
1727
https://doi.org/10.1246/bcsj.77.1727

19

A。
 
Barbieri
单击功能区上,
A。
 
Droghetti
单击功能区上,
S。
 
Sostero
单击功能区上,
O。
 
Traverso
单击功能区上,
J.Photochem.Photobiol.A
 
1999
单击功能区上,
129
单击功能区上,
137
https://doi.org/10.1016/S1010-6030(99)00167-7

20

E。
 
Polo
单击功能区上,
A。
 
Barbieri
单击功能区上,
O。
 
Traverso
单击功能区上,
Eur.J.Inorg.Chem。
 
2003
单击功能区上,
2003
单击功能区上,
324
https://doi.org/10.1002/ejic.200390044

21

B。
 
Caliskan
单击功能区上,
A.C。
 
Caliskan
单击功能区上,
Radiat.Eff.Defects Solids
 
2017
单击功能区上,
172
单击功能区上,
507
https://doi.org/10.1080/10420150.2017.1346652

22

D.R。
 
Javier-Jiménez
单击功能区上,
B.T。
 
Novas
单击功能区上,
R。
 
Waterman
单击功能区上,
Eur.J.Inorg.Chem。
 
2023
单击功能区上,
26
单击功能区上,
e202300341
https://doi.org/10.1002/ejic.202300341

23

A。
 
Hudson
单击功能区上,
.F。
 
Lappert
单击功能区上,
R。
 
Pichon
单击功能区上,
J.Chem.Soc.,Chem.Commun
 
1983
单击功能区上,
7
单击功能区上,
374
https://doi.org/10.1039/C39830000374

第二十四节:

D。
 
Alpers
单击功能区上,
F。
 
Hoffmann
单击功能区上,
 
Brasholz
单击功能区上,
Synlett。
 
2017
单击功能区上,
28
单击功能区上,
919
https://doi.org/10.1055/s-0036-1588957

25

Y。
 
Gao
单击功能区上,
C。
 
阳、阳
单击功能区上,
S。
 
Bai
单击功能区上,
X。
 
Liu
单击功能区上,
Q。
 
Wu
单击功能区上,
J。
 
Wang
单击功能区上,
C。
 
金刚砂
单击功能区上,
X。
 
Qi
单击功能区上,
Chem
 
2020
单击功能区上,
6个
单击功能区上,
675
https://doi.org/10.1016/j.chempr.2019.12.010

26

C。
 
阳、阳
单击功能区上,
Y。
 
Gao
单击功能区上,
S。
 
Bai
单击功能区上,
C。
 
金刚砂
单击功能区上,
X。
 
Qi
单击功能区上,
J.Am.Chem.Soc。
 
2020
单击功能区上,
142
单击功能区上,
11506
https://doi.org/10.1021/jacs.0c03821

27

C。
 
阳、阳
单击功能区上,
S。
 
Bai
单击功能区上,
Y。
 
Gao
单击功能区上,
Q。
 
Wu
单击功能区上,
X。
 
Qi
单击功能区上,
Chem
 
2023
单击功能区上,
9
单击功能区上,
2222
https://doi.org/10.1016/j.chempr.2023.04.006

28

Y。
 
Hirao
单击功能区上,
Y。
 
Katayama
单击功能区上,
H。
 
Mitsunuma
单击功能区上,
 
Kanai
单击功能区上,
Org.Lett。
 
2020
单击功能区上,
22
单击功能区上,
8584
https://doi.org/10.1021/acs.orglett.0c03180

29

X。
 
Ren
单击功能区上,
X。
 
Gao
单击功能区上,
Q.-Q。
 
最小值
单击功能区上,
S。
 
张扬,张扬
单击功能区上,
X。
 
张扬,张扬
单击功能区上,
Chem.Sci。
 
2022
单击功能区上,
13
单击功能区上,
3454
https://doi.org/10.1039/D1SC07061D

30

K。
 
Aida
单击功能区上,
 
Hirao
单击功能区上,
A。
 
Funabashi
单击功能区上,
N。
 
Sugimura
单击功能区上,
E。
 
Ota
单击功能区上,
J。
 
Yamaguchi
单击功能区上,
Chem
 
2022
单击功能区上,
8个
单击功能区上,
1762
https://doi.org/10.1016/j.chempr.2022.04.010

31

W.A。
 
Nugent
单击功能区上,
T.V。
 
Rajanbabu
单击功能区上,
J.Am.Chem.Soc。
 
1988
单击功能区上,
110
单击功能区上,
8561
https://doi.org/10.1021/ja00233a051

32

A。
 
Gansäuer
单击功能区上,
 
Pierobon
单击功能区上,
H。
 
Bluhm
单击功能区上,
Angew.Chem.,Int.Ed
 
1998
单击功能区上,
37
单击功能区上,
101
https://doi.org/10.1002(SICI)1521-3773(19980202)37:1/2<101::AID-ANIE101>3.0.CO;2-W

33

E.D。
 
Nacsa
单击功能区上,
D.W.C。
 
MacMillan
单击功能区上,
J.Am.Chem.Soc。
 
2018
单击功能区上,
140
单击功能区上,
3322
https://doi.org/10.1021/jacs.7b12768

34

K。
 
Aida
单击功能区上,
E。
 
Ota
单击功能区上,
J。
 
Yamaguchi
单击功能区上,
Synlett。
 
2024
单击功能区上,
35
单击功能区上,
451
https://doi.org/10.1055/s-0041-1738454

35

A。
 
Gansäuer
单击功能区上,
N。
 
Ndene
单击功能区上,
T。
 
Lauterbach
单击功能区上,
J。
 
Justicia
单击功能区上,
I。
 
Winkler
单击功能区上,
C。
 
ück-Lichtenfeld
单击功能区上,
S。
 
Grimme
单击功能区上,
Tetrahedron
 
2008年
单击功能区上,
64
单击功能区上,
11839
https://doi.org/10.1016/j.tet.2008.08.107

36

T。
 
Okita
单击功能区上,
K。
 
Aida
单击功能区上,
K。
 
Tanaka
单击功能区上,
E。
 
Ota
单击功能区上,
J。
 
Yamaguchi
单击功能区上,
Precis.Chem
 
2023
单击功能区上,
1个
单击功能区上,
112
https://doi.org/10.1021/prechem.2c00002

37

F。
 
Juliá
单击功能区上,
T。
 
固定,固定
单击功能区上,
D。
 
Leonori
单击功能区上,
Chem.Rev。
 
2022
单击功能区上,
122
单击功能区上,
2292
https://doi.org/10.1021/acs.chemrev.1c00558

graphic

Kazuhiro Aida

Kazuhiro Aida was born in Tokyo,Japan in 1997.He received his BSc(2020)and MSc(2022)degrees from Waseda University。Currently,he is a PhD candidate in the group of Junichiro Yamaguchi at Waseda University.His research has focused on the development of inactive bond cleavage reactions using photoredox catalysis。

graphic

Eisuke Ota

Eisuke Ota was born in Chiba in 1987and raised in Tokyo,Japan。He received his BSc(2010)and MSc degrees(2012)from Keio University under the guidance of Prof.Shigeru Nishiyama。He then joined the group of Prof.Mikiko Sodeoka at RIKEN,where he completed his PhD in 2016.After working as a postdoctoral researcher for one year at the same place,he became a JSPS Overseas Research Fellow in the lab of Robert Knowles at Princeton University.In the fall of 2018,he became assan prosist, working with Prof.Junichiro Yamaguchi,and was promoted to associate professor in 2024.His research interests are the development of photochemical bond cleavage methods for organic synthesis and chemical biology。

graphic

Junichiro Yamaguchi

Junichiro Yamaguchi was born in Tokyo,Japan,in1979.He received his PhD in 2007from the Tokyo University of Science under the supervision of Prof.Yujiro Hayashi.From2007to2008,he was a postdoctoral fellow in the group of Prof.Phil S.Baran at The Scripps Research Institute ad)。In2008,he became an Assistant Professor at Nagoya University working with Prof.Kenichiro Itami and was promoted to Associate Professor in 2012.He then moved to Waseda University asan Associate Professor(principal investigator)in2016and promoted to full professor in 2018。His research interests include the total synthesis of natural products and the innovation of synthetic methods。

Author notes

Conflict of interest statement。None declared。

安全公共许可证,安全公共许可证,安全公共许可证https://creativecommons.org/licenses/by-nc/4.0/),which permits non-commercial re-use,distribution,and reproduction in any medium,provided the original work is properly cited.For commercial re-use,please contactreprints@oup.com for reprints and translation rights for reprints.All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contactjournals.permissions@oup.com。