Abstract

Hybrid photocatalysts prepared by the adsorption of metal complexes on semiconductors via anchoring groups are among notable photocatalysts for selective CO2reduction using abundant electron donors.However,their photocatalytic activities are limited by their low adsorption amounts and strength.In this study, we demonstrate the reductive polymerization of vinyl groups in metal complexes triggered by excited electrons on semiconductors asanew immobilization method.This approach significantly enhanced the adsorption amount and durability,thus increasing the photocatalytic performance。

Hybrid photocatalysts constructed with metal complexes and semiconductors are notable photocatalysts for selective CO2 reduction using abundant electron donors.We herein report a new hybridization method using reductive polymerization of vinyl groups in metal complexes triggered by excited electrons on seductis lyenhanced the adsorption amount and durability of metal complexes,thus increasing the photocatalytic performance。

Hybrid photocatalystructed with metal complexes and semiconductors are notable photocatalysts for selective CO2reduction using abundant electron donors.We herein report a new hybridization method using reductive polymerization of vinyl groups in metal complexes triggered by excited electrons on semiconductors.This approach significantly enhanced the adsorption amount and durability of metal complexes,thus increasinag the photoration。

CO2再生,再生单击功能区上,hybrid photocatalyst单击功能区上,动力汽化

Global warming triggered by the enormous consumption of fossil fuels represents a significant environmental issue globally。1个New scientific and industrial approaches for building a carbon-neutral society have been intensively studied and developed in recent years to tackle this issue.Notably,photocatalytic carbon dioxide(CO2)可回收的可回收的chemical reaction as it can decrease atmospheric CO2concentration while yielding valuable carbon compounds for industrial and human activities。2单击功能区上,3Consequently,various types of effective(photo)catalysts have been reported for CO2reduction,e.g.metal complexes,4-8semiconductors,9-13metal particles,14单击功能区上,15and enzymes。16–18oreover,hybridizing two of the aforementioned materials often exerts synergistic effects toward achieving remarkable photocatalytic activities.For instance,semiconductor/multinuclear metal complex-type hybrid photocatalysts,which are prepared by immobilizing a metal complex ona semiconductor particle(orelectrode)via anchoring groups in the ligand(Fig。1a),have attracted attention as effective photocatalysts for CO2reduction that can utilize abundant electron donors,such as amines and alcohols。19-29The semiconductor units in semiconductor particle/multinuclear metal complex-type hybrid photocatalysts photocatalytically oxidize the electron donors and reduce the adjacent metal-complexphotosensitizer in the excited state.The produced one-electron-reduced specof the photosensitizer in the excites states the bridging ligand(BL),绝缘绝缘性CO2reduction on the catalyst unit.This electron relay process accompanied by the two-step excitation can be considered an artificialZ-scheme单击功能区上,which results in the high reducing and oxidizing powers of the photocatalysts。

a)Structure of the reported semiconductor particle/metal complex-type hybrid photocatalysts and schematics for preparing b)the reported semiconductor/metal-complex polymer-type molecular photocathode and c)semiconductor particle/metal-complex polymer-type hybrid photocatalythutys in。
Fig.1。

a)Structure of the reported semiconductor particle/metal complex-type hybrid photocatalysts and schematics for preparing b)the reported semiconductor/metal-complex polymer-type molecular photocathode and c)semiconductor particle/metal-complex polymer-type hybrid photocatalythutys in。

However,the desorption of metal complexes from the semiconductor surfaces is afrequently observed phenomenon,accounting for the low durability of semiconductor/metal complex-type hybrid photocatalysts。21单击功能区上,23This is mainly because the adsorption by the anchoring groups(e.g.phosphonic acid and carboxylic acid groups)is not sufficiently strong to maintain several hours of immobilization in reactions solutions under photoirradiation。In addition to the low durability,the immobilization by the anchoring groups limits the amounts of adsorbed metal complexes,lowering the visible-light absorptivity of the metal-complex units.Ishitani and coworkers,including two of the authors of this paper,recently developed efficient and high ly durable molecular photocathodes byimmobilizing metal complexes on a semiconductor electrode(Fig。1b)。30单击功能区上,31To prepare these photocathodes,a Ru photosensitizer complex bearing phosphonic acid groups(P)as anchoring moieties and vinyl groups(V2)as reactive points for electrochemical polymerization was first adsorbed onto the semiconductor electrode。电火花焊接法V2,and the complexes were reduced using the electrode as aworking electrode and by repeatedly applying a negative potential3)to trigger the vinyl polymerization of the metal complexes。Furthermore,the adsorption amount,visible-light absorptivity,and adsorption durability of the metal complexes were significantly improved by the multilayer polymerization,which increased the hydrophobicity and facilitated multipoint interaction,enhancing the photocatalytic activity of the photocathodes.In addition to the aforementioned system,several other relevant studies have demonstrated the polymerization of metal complexes on semiconductors asan effective preparation method for highly active molecular(photo)electrodes。32–41

Inspired by these studies,we applied vinyl polymerization to the preparation of semiconductor particle/metal complex-type hybrid photocatalys.To trigger the polymerization on the semiconductor particles,visible light was irradiated in the presence of the reductants to reduce the metal complexes withV2by the excited electrons on the semiconductors and/or photo-inducedZ-scheme electron transfer,which includes the excitations of the semiconductors and metal complexes(Fig。1c)。Employing this method,we prepared semiconductor particle/polymerized metal complex-type hybrid photocatalysts with enhanced photocatalytic activities。

Asa typical example in this study,we selected nanosheet-type polymeric carbon nitride(PCN)and Ru binuclear complex units as the semiconductor particle25单击功能区上,42and CO2photoreduction unit,20-22respectively,which are reportedly among the most effective combinations for hybrid photocatalysts toward CO2reduction.We prepared the hybrid photocatalysts comprising PCN particles and polymerized metal complexes(i.e。PCN/P–Ru–poly–Ru–BL–Ru’(Stepwise)and,andPCN/P–Ru–poly–Ru–BL–Ru’(One Step))by two methods,as illustrated in Fig。2a and 2b单击功能区上,respectively.In both preparation methods,a Ru complex bearingPand,andV2P-Ru-V2)as a starting point of the polymerization was first adsorbed onto the light yellow PCN powder(PCN/P–Ru-V2,Fig。2a)by suspension in acetonitrile containing PCN andP-Ru-V2打开;the maximum adsorption amount ofP-Ru-V2was5.9µmol/g,which is similar to that of the Ru binuclear complex(P-Ru-BL-Ru',6.1µmol/g)used to prepare the reported hybrid photocatalyst illustrated in Fig。2cPCN/P-Ru-BL-Ru')。

Abbreviations and schematic preparations of the hybrid photocatalysts developed in this study:a)stepwise preparation based on the polymerization of the Ru complexes with BL,followed by the complexation of the catalyst units(Ru';Method1)and b)one-step preparation based on the polymerization of the binuclear complexes(Method2)。c)Structure of the corresponding photocatalyst in the literature,which was hybridized using P anchoring groups。
Fig.2。

Abbreviations and schematic preparations of the hybrid photocatalysts developed in this study:a)stepwise preparation based on the polymerization of the Ru complexes with BL,followed by the complexation of the catalyst units(Ru'打开;Method1)and b)one-step preparation based on the polymerization of the binuclear complexes(Method2)。c)结构(Structure of the corresponding photocatalyst in the literature,which was hybridized using)Panchoring groups。

目的地,目的地PCN/P–Ru–poly–Ru–BL–Ru’(Stepwise)单击功能区上,PCN/P–Ru-V2水上回填网V2and aBLV2–Ru–BL,Method1in Fig。2a)。To trigger the polymerization of the metal complexes withPCN/P–Ru-V2单击功能区上,可观测的照明线路PCN/P–Ru-V2整体式炉排控制装置V2–Ru–BL.After10 min of irradiation,the resulting reddish orange solid(PCN/P–Ru–poly–Ru–BL)was obtained by filtration,并用过载过载过载过载过载过载过载过载过载过载过载过载过载过载过载过载过载过载过载过载过载过载过载过载过载过载过载过载过载过载过载过载过载过载V2–Ru–BLwas29µmol/g,as determined using the ultraviolet-visible(UV-Vis)absorption spectra of the filtrate(Supporting Information;the suitable irradiation time was determined from the results of reactions using[Ru(vbpy)3(PF)6个2(vbpy4-methyl-4'-vinyl-2,2'-bipyridine)asa model complex。The detail is discussed in supporting information).In total,35Ⅹmol/g Ru tris(bipyridine)-type photosensitizer units were introduced intoPCN/P–Ru–poly–Ru–BL.The conduction band minimum of PCN was reported to be-2.1±0.1 V vs.Ag/AgNO3单击功能区上,43and the reduction wave ofP-Ru-V2was observed in the cyclic voltammogram between-1.5 and-1.9 V;31在PCN probably proceeded to the excited and ground states ofP-Ru-V2,resulting in relatively efficient polymerization.The introduction of the catalyst units(Ru')toPCN/P–Ru–poly–Ru–BLto preparePCN/P–Ru–poly–Ru–BL–Ru’(Stepwise)水上引出线连接PCN/P–Ru–poly–Ru–BLand[Ru(CO)]2Cl2]nas a precursor complex。31Thereference hybrid photocatalyst,PCN/P–Ru–poly–Ru–BL–Ru’(One Step)单击功能区上,水上预应力发电站PCN/P–Ru-V2和运行双轮压配合V2and aRu'单位V2–Ru–BL–Ru′打开;Method2in Fig。2b)。The adsorbed amount ofV2–Ru–BL–Ru′was estimated to be24µmol/g.Consequently,the polymerization method deployed in this study increased the adsorption amounts by approximately four or five times。

The obtainedPCN/P–Ru–poly–Ru–BL–Ru’(Stepwise)and,andPCN/P–Ru–poly–Ru–BL–Ru’(One Step)samples were analyzed by UV-Vis diffuse reflectance spectroscopy(DRS)and Fourier-transform infrared(FT–IR)spectroscopy using the potassium bromide tablet method。In the DRS spectra,PCN exhibited a steep absorption edge around 450瀹nm,with a tail extending to 600瀹nm(Fig。3aand,andSupplementary Fig.S1)。After immobilizing the metal complexes,anew absorption band,which was mainly derived from the metal-to-ligand charge transfer(MLCT)absorption band of the Ru tris(bipyridine)units was observed asa shoulder peak around 460nm。44The MLCT absorption bands were more evident using the polymerization method.The FT–IR spectra ofPCN/P–Ru–poly–Ru–BL–Ru’(Stepwise)and,andPCN/P-Ru-BL-Ru'revealed two characteristic absorption bands derived from the dicarbonyl complex units around2060and1990炻cm-1(Fig。3b)。31The absorption bands ofPCN/P–Ru–poly–Ru–BL–Ru’(Stepwise)焊缝厚度PCN/P-Ru-BL-Ru'单击功能区上,reflecting the larger amounts of adsorbed complexes.Interestingly,no CO stretching band was observed in the FT–IR spectrum ofPCN/P–Ru–poly–Ru–BL–Ru’(One Step).This result indicated that the carbonyl ligands were dissociated from the catalyst-complex units during polymerization to preparePCN/P–Ru–poly–Ru–BL–Ru’(One Step)单击功能区上,probably via photochemical decarbonylation reactions。45

a)DRS and b)FT–IR spectra of the hybrid photocatalysts prepared in this study(red,PCN/P–Ru–poly–Ru–BL–Ru′(Stepwise);blue,PCN/P–Ru–poly–Ru–BL–Ru'(One Step);green,PCN/P–Ru–BL–Ru′;black,PCN[for DRS]or V2–Ru–BL–Ru′[for FT–IR])。
Fig.3。

a)DRS and b)FT-IR spectra of the hybrid photocatalysts prepared in this study(red,PCN/P–Ru–poly–Ru–BL–Ru’(Stepwise)打开;blue,PCN/P–Ru–poly–Ru–BL–Ru’(One Step)打开;green,PCN/P-Ru-BL-Ru'打开;black,PCN[for DRS]orV2–Ru–BL–Ru′[for FT–IR])。

We also evaluated the adsorption durability of the metal complexes in the hybrid photocatalysts by suspending them in a mixture ofN单击功能区上,N-dimethylacetamide(DMA)and triethanolamine(TEOA),which is an effective mixed solvent for photocatalytic CO2reduction。46After suspending them overnight in the dark and filtering off the solid,the filtrate was analyzed by UV-Vis absorption spectroscopy.RegardingPCN/P-Ru-BL-Ru',we detected evident MLCT absorption bands of the Ru tris(bipyridine)moieties(Supplementary Fig.S4C)。The absorbance at462 nm was49%of the simulated value when all of the Ru complexes were desorbed from PCN。This result indicated that half of the Ru complexes would be desorbed from the PCN surface in the reaction suspension for photocatalytic reactions.EmployingPCN/P–Ru–poly–Ru–BL–Ru’(Stepwise),we observed a similar absorption spectrum despite the much higher amount of adsorbed Ru complexes(Supplementary Fig.S4A)。Theestimated desorption ratio was only5%.Additionally,PCN/P–Ru–poly–Ru–BL–Ru’(One Step)exhibited alow desorption ratio(14%,Supplementary Fig.S4B)。These results indicated that the adsorption durability was enhanced by the polymerization method。

Next,the photocatalytic activity of the hybrid photocatalysts was examined byirradiating the DMA–TEOA suspensions(4:1 \u003; v/v)containing a hybrid photocatalyst with visible light under a CO2atmosphere for 6 \u003; h。In all cases,we detected CO,HCOOH,and a small amount of H2after the reactions(Fig。4a)。ForPCN/P-Ru-BL-Ru',1.6and2.1µmol CO and HCOOH,respectively,were produced;these values are similar to those of the reported system。21Conversely,PCN/P–Ru–poly–Ru–BL–Ru’(Stepwise)produced approximately four or five times more products(i.e.6.7and11.1),respectively).This increase in the photocatalytic activity was likely due to the large adsorption amount of the Ru complexes.Notably,PCN/P–Ru–poly–Ru–BL–Ru’(One Step)yieled similar or slightly lower amounts of the products compared withPCN/P-Ru-BL-Ru'(i.e.1.8and1.3µmol CO and HCOOH,respectively).Despite the larger adsorption amount of the metal complexes,the lower catalytic activity ofPCN/P–Ru–poly–Ru–BL–Ru’(One Step)从左到右,从右到右Ru',as aforementioned。

a)Amount of the reduction products after6 h of photocatalytic CO2 reduction using the hybrid photocatalysts(orange,CO;green,HCOOH;gray,H2).The time courses of the amount of reduction products are illustrated in b;green,PCN/P–Ru–BL–Ru′;solid line,HCOOH;dotted line,CO)。
Fig.4。

a)Amount of the reduction products after6 h of photocatalytic CO2orange,CO;green,HCOOH;gray,H2)。时间courses of the amount of reduction products are illustrated in b)(red,PCN/P–Ru–poly–Ru–BL–Ru’(Stepwise)打开;green,PCN/P-Ru-BL-Ru'打开;solid line,HCOOH;dotted line,CO)。

火焰,火焰4bshows the time courses of the amount of reduction products.When usingPCN/P-Ru-BL-Ru',the production of CO and HCOOH proceeded with relatively high efficiency but almost stopped within1炻h。空气质量控制2还原(Φ)CO + HCOOH)was0.04%。The photocatalysis byPCN/P–Ru–poly–Ru–BL–Ru’(Stepwise)预成形高度计(Φ)CO + HCOOH=0.1%)and continued for6 h。为discuss the reason for the different photocatalytic activities,we measured the DRS of the photocatalysts after the reaction(Supplementary Fig.S5)。In the spectra ofPCN/P-Ru-BL-Ru',the shoulder peaks attributed to the MLCT absorption bands around460Ⅹnm almost disappeared within1Ⅹh of the reaction(Supplementary Fig.S5B)。Conversely,employingPCN/P–Ru–poly–Ru–BL–Ru’(Stepwise),the absorbance at the MLCT absorption bands decreased,although it was evidently detected even after irradiation for over6炻h(Supplementary Fig.S5A打开;the desorption ratios under photoirradiation were larger than those under the dark.Although the investigation of the reason is ongoing,the excitation and reduction of metal complexes and/or semiconductors might promote the desorption of metal-complex polymers[cf.Hanson et al。47and Sahara et al。23]。The production of bubbles of the gaseous products from the semiconductor surfaces[mainly H2[might be another possible reason for promoting the desorption of polymer catalysts[cf.Sato et al。32]),indicating that the adsorption durability of the metal complexes under irradiation was also enhanced by polymerization.The FT–IR spectrum changes suggested the decomposition of the catalyst units after irradiation for3邛h,probably leading to the decrease in the photocatalytic activity ofPCN/P–Ru–poly–Ru–BL–Ru’(Stepwise)Supplementary Fig.S6)。We also revealed that the too-large adsorption amount of metal complexes led to lower photocatalytic activity(Supplementary Fig.S7)likely because the coverage of PCN surfaces by the metal-complex polymers suppressed the electron infection to PCN from TEOA。

As another example of hybrid photocatalysts prepared by the immobilization method deployed in this study,we also prepared hybrid photocatalysts bearingReunits(PCN/P–Ru–poly–Ru–BLRe),which is an analog ofPCN/P–Ru–poly–Ru–BL–Ru’(One Step)Supplementary Fig.S8)。The adsorption amount of the Ru–Re binuclear complexes in the polymerization step was28µmol/g,which is similar to the value obtained using Ru–Ru binuclear complexes.Photocatalytic CO2减压装置PCN/P–Ru–poly–Ru–BL–Rerevealed selective CO formation.The amount of CO produced after irradiation for6炻hwas approximately two times that produced using the corresponding model photocatalysts prepared without polymerization(PCN/P-Ru-BL-Re单击功能区上,Supplementary Fig.S8)。These results indicated that the immobilization method deployed in this study can be applied to the preparation of various hybrid photocatalysts with different catalyst units.The polymerization methis study could also be applied to hybrididizingBiVO4个/P–Ru–V2and,andV2–Ru–BL–Reto prepareBiVO4个/P–Ru–poly–Ru–BL–ReSupplementary Fig.S9),BiVO of even though the reducing power of4个is not strong enough to reduce the ground state of the Ru units.This result suggests that the photochemical polymerization can be triggered via Z-scheme electron transfer.Unfortunately,however,BiVO4个/P–Ru–poly–Ru–BL–Redid not show photocatalytic activity for CO2reduction.The investigation of the application scope of the preparation methis study and detailed photocatalytic activities of hybrid photocatalysts are undergoing。

In conclusion,we applied the vinyl polymerization of metal complexes triggered by excited electrons from the semiconductor to the immobilization of metal complexplexes on semiconductor particles to prepare hybrid photocatalys.The obtained hybrid photocatalystoalystoxhibited enhanced adsorptionamounts,vivivitery,sorpy, and adsorption durability of the metal complexes.Particularly,employing the stepwise preparation method,i.e.introducing the catalyst units after the photochemical polymerization to avoid decarbonylation, the photocatalytic activity increased significantly.Our findings can be applied to the design of anew series of hybrid photocatalysts for CO2reduction。

Acknowledgments

We thank Dr.Shigeo Satokawa(Seikei University)for the DRS measurement and Dr.Noritaka Sakakibara and Mr.Mitsuhiko Shizuno(Tokyo Institute of Technology)for the preparation of PCN。

Supplementary data

Supplementary material可操作,可操作Chemistry Lettersonline。

Funding

(JSPS)Grants-in-Aid for Scientific Research(KAKENHi,Grant numbers JP22K14715,JP22H05148),and a grant from Seikei University。

参考,参考

1个

 
Höök
单击功能区上,
X。
 
Tang
单击功能区上,
能源策略。
 
2013
单击功能区上,
52
单击功能区上,
797
https://doi.org/10.1016/j.enpol.2012.10.046

2

S。
 
Das
单击功能区上,
W.M.A。
 
Wan Daud
单击功能区上,
RSC.Adv。
 
2014
单击功能区上,
4个
单击功能区上,
20856
https://doi.org/10.1039/c4ra01769b

3

J。
 
Artz
单击功能区上,
T.E。
 
üller
单击功能区上,
K。
 
Thenert
单击功能区上,
J。
 
Kleinekorte
单击功能区上,
R。
 
中、中
单击功能区上,
A。
 
Sternberg
单击功能区上,
A。
 
Bardow
单击功能区上,
W。
 
Leitner
单击功能区上,
Chem.Rev。
 
2018
单击功能区上,
118
单击功能区上,
434
https://doi.org/10.1021/acs.chemrev.7b00435

4个

A.J。
 
莫里斯
单击功能区上,
G.J。
 
电唱机
单击功能区上,
E。
 
Fujita
单击功能区上,
Acc.Chem.Res。
 
2009年
单击功能区上,
42
单击功能区上,
1983
https://doi.org/10.1021/ar9001679

5

C.D。
 
Windle
单击功能区上,
R.N。
 
Perutz
单击功能区上,
Coord.Chem.Rev。
 
2012
单击功能区上,
256
单击功能区上,
2562
https://doi.org/10.1016/j.ccr.2012.03.010

6个

Y。
 
Yamazaki
单击功能区上,
H。
 
Takeda
单击功能区上,
O。
 
Ishitani
单击功能区上,
J.Photochem.Photobiol.C
 
2015
单击功能区上,
25
单击功能区上,
106
https://doi.org/10.1016/j.jphotochemrev.2015.09.001

7

Y。
 
Kuramochi
单击功能区上,
O。
 
Ishitani
单击功能区上,
H。
 
Ishida
单击功能区上,
Coord.Chem.Rev。
 
2018
单击功能区上,
373
单击功能区上,
333
https://doi.org/10.1016/j.ccr.2017.11.023

8个

K。
 
Kosugi
单击功能区上,
C。
 
Akatsuka
单击功能区上,
H。
 
Iwami
单击功能区上,
 
Kondo
单击功能区上,
S。
 
Masaoka
单击功能区上,
J.Am.Chem.Soc。
 
2023
单击功能区上,
145
单击功能区上,
10451
https://doi.org/10.1021/jacs.3c00783

9

T。
 
Inoue
单击功能区上,
A。
 
Fujishima
单击功能区上,
S。
 
Konishi
单击功能区上,
K。
 
Honda
单击功能区上,
自然,自然
 
1979
单击功能区上,
277
单击功能区上,
637
https://doi.org/10.1038/277637a0

10

K。
 
Li
单击功能区上,
B。
 
Peng
单击功能区上,
T。
 
Peng
单击功能区上,
ACS.Catal。
 
2016
单击功能区上,
6个
单击功能区上,
7485
https://doi.org/10.1021/acscatal.6b02089

11

J。
 
Ran
单击功能区上,
 
Jaroniec
单击功能区上,
S.Z。
 
Qiao
单击功能区上,
Add.Mater
 
2018
单击功能区上,
30
单击功能区上,
1704649
https://doi.org/10.1002/adma.201704649

12

S。
 
Yoshino
单击功能区上,
A。
 
Iwase
单击功能区上,
Y。
 
Yamaguchi
单击功能区上,
T.M。
 
Suzuki
单击功能区上,
T。
 
莫里卡瓦
单击功能区上,
A。
 
Kudo
单击功能区上,
J.Am.Chem.Soc。
 
2022
单击功能区上,
144
单击功能区上,
2323
https://doi.org/10.1021/jacs.1c12636

13

J。
 
Lian
单击功能区上,
K。
 
Shibata
单击功能区上,
Y。
 
Xiao
单击功能区上,
S。
 
Du
单击功能区上,
T。
 
Tanaka
单击功能区上,
Y。
 
Qi
单击功能区上,
O。
 
Ishitani
单击功能区上,
K。
 
Maeda
单击功能区上,
Z。
 
Feng
单击功能区上,
F。
 
张扬,张扬
单击功能区上,
J.Mater.Chem.A
 
2023
单击功能区上,
11
单击功能区上,
141
https://doi.org/10.1039/D2TA08076A

14

H。
 
Sugiyama
单击功能区上,
 
Miyazaki
单击功能区上,
 
Sasase
单击功能区上,
 
Kitano
单击功能区上,
H。
 
Hosono
单击功能区上,
J.Am.Chem.Soc。
 
2023
单击功能区上,
145
单击功能区上,
9410
https://doi.org/10.1021/jacs.2c13801

15

S。
 
Nitopi
单击功能区上,
E。
 
Bertheussen
单击功能区上,
S.B。
 
Scott
单击功能区上,
X。
 
Liu
单击功能区上,
A.K。
 
Engstfeld
单击功能区上,
S。
 
Horch
单击功能区上,
B。
 
Seger
单击功能区上,
I.E.L。
 
Stephens
单击功能区上,
K。
 
Chan
单击功能区上,
C。
 
Hahn
单击功能区上,
J.K。
 
Nørskov
单击功能区上,
T.F。
 
Jaramillo
单击功能区上,
I。
 
Chorkendorff
单击功能区上,
Chem.Rev。
 
2019
单击功能区上,
119
单击功能区上,
7610
https://doi.org/10.1021/acs.chemrev.8b00705

16

l。
 
Willner
单击功能区上,
D。
 
Mandler
单击功能区上,
A。
 
Riklin
单击功能区上,
J.Chem.Soc.Chem.Commun。
 
1986
单击功能区上,
13
单击功能区上,
1022
https://doi.org/10.1039/c39860001022

第十七节:

S。
 
Fukuzumi
单击功能区上,
Eur.J.Inorg.Chem。
 
2008年
单击功能区上,
2008年
单击功能区上,
1351
https://doi.org/10.1002/ejic.200701369

18

Y。
 
Amao
单击功能区上,
S。
 
Ikeyama
单击功能区上,
Chem.Lett。
 
2015
单击功能区上,
44
单击功能区上,
1182
https://doi.org/10.1246/cl.150425

19

S。
 
Sato
单击功能区上,
T。
 
莫里卡瓦
单击功能区上,
S。
 
Saeki
单击功能区上,
T。
 
Kajino
单击功能区上,
T。
 
Motohiro
单击功能区上,
Angew.Chem.Int.Ed
 
2010
单击功能区上,
49
单击功能区上,
5101
https://doi.org/10.1002/anie.201000613

20

K。
 
Sekizawa
单击功能区上,
K。
 
Maeda
单击功能区上,
K。
 
Domen
单击功能区上,
K。
 
Koike
单击功能区上,
O。
 
Ishitani
单击功能区上,
J.Am.Chem.Soc。
 
2013
单击功能区上,
135
单击功能区上,
4596
https://doi.org/10.1021/ja31541a

21

R。
 
Kuriki
单击功能区上,
H。
 
Matsunaga
单击功能区上,
T。
 
Nakashima
单击功能区上,
K。
 
Wada
单击功能区上,
A。
 
Yamakata
单击功能区上,
O。
 
Ishitani
单击功能区上,
K。
 
Maeda
单击功能区上,
J.Am.Chem.Soc。
 
2016
单击功能区上,
138
单击功能区上,
5159
https://doi.org/10.1021/jacs.6b01997

22

A。
 
Nakada
单击功能区上,
T。
 
Nakashima
单击功能区上,
K。
 
Sekizawa
单击功能区上,
K。
 
Maeda
单击功能区上,
O。
 
Ishitani
单击功能区上,
Chem.Sci。
 
2016
单击功能区上,
7
单击功能区上,
4364
https://doi.org/10.1039/C6SC00586A

23

G。
 
Sahara
单击功能区上,
H。
 
Kumagai
单击功能区上,
K。
 
Maeda
单击功能区上,
N。
 
Kaeffer
单击功能区上,
V。
 
Artero
单击功能区上,
 
Higashi
单击功能区上,
R。
 
Abe
单击功能区上,
O。
 
Ishitani
单击功能区上,
J.Am.Chem.Soc。
 
2016
单击功能区上,
138
单击功能区上,
14152
https://doi.org/10.1021/jacs.6b09212

第二十四节:

H。
 
Kumagai
单击功能区上,
G。
 
Sahara
单击功能区上,
K。
 
Maeda
单击功能区上,
 
Higashi
单击功能区上,
R。
 
Abe
单击功能区上,
O。
 
Ishitani
单击功能区上,
Chem.Sci。
 
2017
单击功能区上,
8个
单击功能区上,
4242
https://doi.org/10.1039/C7SC00940B

25

R。
 
Kuriki
单击功能区上,
 
Yamamoto
单击功能区上,
K。
 
Higuchi
单击功能区上,
Y。
 
Yamamoto
单击功能区上,
 
Akatsuka
单击功能区上,
D。
 
Lu
单击功能区上,
S。
 
Yagi
单击功能区上,
T。
 
Yoshida
单击功能区上,
O。
 
Ishitani
单击功能区上,
K。
 
Maeda
单击功能区上,
Angew.Chem.Int.Ed
 
2017
单击功能区上,
56
单击功能区上,
4867
https://doi.org/10.1002/anie.201701627

26

 
Shizuno
单击功能区上,
K。
 
Kato
单击功能区上,
S。
 
Nishioka
单击功能区上,
T。
 
Kanazawa
单击功能区上,
D。
 
Saito
单击功能区上,
S。
 
Nozawa
单击功能区上,
A。
 
Yamakata
单击功能区上,
O。
 
Ishitani
单击功能区上,
K。
 
Maeda
单击功能区上,
ACS Appl.Energy Mater
 
2022
单击功能区上,
5
单击功能区上,
9479
https://doi.org/10.1021/acsaem.2c01052

27

A。
 
Kobayashi
单击功能区上,
S.-Y。
 
Takizawa
单击功能区上,
 
Hirahara
单击功能区上,
Coord.Chem.Rev。
 
2022
单击功能区上,
467
单击功能区上,
214624
https://doi.org/10.1016/j.ccr.2022.214624

28

F。
 
Kuttassery
单击功能区上,
Y。
 
Ohsaki
单击功能区上,
A。
 
Thomas
单击功能区上,
R。
 
Kamata
单击功能区上,
Y。
 
Ebato
单击功能区上,
H。
 
Kumagai
单击功能区上,
R。
 
Nakazato
单击功能区上,
A。
 
Sebastian
单击功能区上,
S。
 
匹配,匹配
单击功能区上,
H。
 
Tachibana
单击功能区上,
O。
 
Ishitani
单击功能区上,
H。
 
Inoue
单击功能区上,
Angew.Chem.Int.Ed
 
2023
单击功能区上,
62
单击功能区上,
e202308956
https://doi.org/10.1002/anie.202308956

29

N。
 
Sakakibara
单击功能区上,
 
Shizuno
单击功能区上,
T。
 
Kanazawa
单击功能区上,
K。
 
Kato
单击功能区上,
A。
 
Yamakata
单击功能区上,
S。
 
Nozawa
单击功能区上,
T。
 
Ito
单击功能区上,
K。
 
Terashima
单击功能区上,
K。
 
Maeda
单击功能区上,
Y。
 
Tamaki
单击功能区上,
O。
 
Ishitani
单击功能区上,
ACS Appl.Mater.Interfaces
 
2023
单击功能区上,
15
单击功能区上,
13205
https://doi.org/10.1021/acsami.3c00955

30

R。
 
Kamata
单击功能区上,
H。
 
Kumagai
单击功能区上,
Y。
 
Yamazaki
单击功能区上,
G。
 
Sahara
单击功能区上,
O。
 
Ishitani
单击功能区上,
ACS Appl.Mater.Interfaces
 
2019
单击功能区上,
11
单击功能区上,
5632
https://doi.org/10.1021/acsami.8b05495

31

R。
 
Kamata
单击功能区上,
H。
 
Kumagai
单击功能区上,
Y。
 
Yamazaki
单击功能区上,
 
Higashi
单击功能区上,
R。
 
Abe
单击功能区上,
O。
 
Ishitani
单击功能区上,
J.Mater.Chem.A
 
2021
单击功能区上,
9
单击功能区上,
1517
https://doi.org/10.1039/D0TA07351B

32

S。
 
Sato
单击功能区上,
T。
 
Arai
单击功能区上,
T。
 
莫里卡瓦
单击功能区上,
K。
 
Uemura
单击功能区上,
T.M。
 
Suzuki
单击功能区上,
H。
 
Tanaka
单击功能区上,
T。
 
Kajino
单击功能区上,
J.Am.Chem.Soc。
 
2011
单击功能区上,
133
单击功能区上,
15240
https://doi.org/10.1021/ja204881d

33

A.M。
 
拉皮des
单击功能区上,
D.L。
 
Ashford
单击功能区上,
K。
 
Hanson
单击功能区上,
D.A。
 
Torelli
单击功能区上,
J.L。
 
模板,模板
单击功能区上,
T.J。
 
电唱机
单击功能区上,
J.Am.Chem.Soc。
 
2013
单击功能区上,
135
单击功能区上,
15450
https://doi.org/10.1021/ja4055977

34

D.L。
 
Ashford
单击功能区上,
A.M。
 
拉皮des
单击功能区上,
A.K。
 
Vannucci
单击功能区上,
K。
 
Hanson
单击功能区上,
D.A。
 
Torelli
单击功能区上,
D.P。
 
Harrison
单击功能区上,
J.L。
 
模板,模板
单击功能区上,
T.J。
 
电唱机
单击功能区上,
J.Am.Chem.Soc。
 
2014
单击功能区上,
136
单击功能区上,
6578
https://doi.org/10.1021/ja502464s

35

D.L。
 
Ashford
单击功能区上,
B.D。
 
Sherman
单击功能区上,
R.A。
 
Binstead
单击功能区上,
J.L。
 
模板,模板
单击功能区上,
T.J。
 
电唱机
单击功能区上,
Angew.Chem.Int.Ed
 
2015
单击功能区上,
54
单击功能区上,
4778
https://doi.org/10.1002/anie.201410944

36

Y。
 
Lattach
单击功能区上,
J。
 
Fortage
单击功能区上,
A。
 
Deronzier
单击功能区上,
J.C。
 
出口,出口
单击功能区上,
ACS Appl.Mater.Interfaces
 
2015
单击功能区上,
7
单击功能区上,
4476
https://doi.org/10.1021/acsami.5b00401

37

F。
 
Li
单击功能区上,
K。
 
Fan
单击功能区上,
L。
 
Wang
单击功能区上,
Q。
 
Daniel
单击功能区上,
L。
 
Duan
单击功能区上,
L。
 
太阳,太阳
单击功能区上,
ACS.Catal。
 
2015
单击功能区上,
5
单击功能区上,
3786
https://doi.org/10.1021/cs502115f

38

J。
 
张扬,张扬
单击功能区上,
J。
 
Du
单击功能区上,
J。
 
Wang
单击功能区上,
Y。
 
Wang
单击功能区上,
C。
 
Wei
单击功能区上,
 
Li
单击功能区上,
Angew.Chem.Int.Ed
 
2018
单击功能区上,
57
单击功能区上,
16698
https://doi.org/10.1002/anie.201809567

39

T.-T。
 
Li
单击功能区上,
B。
 
Shan
单击功能区上,
T.J。
 
电唱机
单击功能区上,
ACS能源Lett
 
2019
单击功能区上,
4个
单击功能区上,
629
https://doi.org/10.1021/acsenergylett.8b02512

40

F。
 
Kuttassery
单击功能区上,
H。
 
Kumagai
单击功能区上,
R。
 
Kamata
单击功能区上,
Y。
 
Ebato
单击功能区上,
 
Higashi
单击功能区上,
H。
 
Suzuki
单击功能区上,
R。
 
Abe
单击功能区上,
O。
 
Ishitani
单击功能区上,
Chem.Sci。
 
2021
单击功能区上,
12
单击功能区上,
13216
https://doi.org/10.1039/D1SC03756K

41

T。
 
Shimamura
单击功能区上,
A。
 
Kobayashi
单击功能区上,
Y。
 
Oaki
单击功能区上,
 
Yoshida
单击功能区上,
 
Kato
单击功能区上,
Energy.Fuels。
 
2022
单击功能区上,
36
单击功能区上,
11559
https://doi.org/10.1021/acs.energyfuels.2c00859

42

K。
 
Wada
单击功能区上,
C.S.K。
 
测距仪
单击功能区上,
R。
 
Kuriki
单击功能区上,
A。
 
Yamakata
单击功能区上,
O。
 
Ishitani
单击功能区上,
K。
 
Maeda
单击功能区上,
ACS Appl.Mater.Interfaces
 
2017
单击功能区上,
9
单击功能区上,
23869
https://doi.org/10.1021/acsami.7b07484

43

K。
 
Maeda
单击功能区上,
Add.Mater
 
2019
单击功能区上,
31
单击功能区上,
e1808205
https://doi.org/10.1002/adma.201808205

44

K。
 
Wada
单击功能区上,
 
Eguchi
单击功能区上,
O。
 
Ishitani
单击功能区上,
K。
 
Maeda
单击功能区上,
ChemSusChem。
 
2017
单击功能区上,
10
单击功能区上,
287
https://doi.org/10.1002/cssc.201600661

45

F。
 
Hartl
单击功能区上,
A.K。
 
Renfrew
单击功能区上,
F。
 
Lafolet
单击功能区上,
T。
 
马赫比辛
单击功能区上,
.J。
 
Calhorda
单击功能区上,
S。
 
Chardon-Noblat
单击功能区上,
 
Haukka
单击功能区上,
A。
 
Deronzier
单击功能区上,
Inorg.Chem。
 
2009年
单击功能区上,
48
单击功能区上,
8233
https://doi.org/10.1021/ic9008043

46

R。
 
Kuriki
单击功能区上,
O。
 
Ishitani
单击功能区上,
K。
 
Maeda
单击功能区上,
ACS Appl.Mater.Interfaces
 
2016
单击功能区上,
8个
单击功能区上,
6011
https://doi.org/10.1021/acsami.5b11836

47

K。
 
Hanson
单击功能区上,
.K。
 
Brennaman
单击功能区上,
H。
 
Luo
单击功能区上,
C.R.K。
 
Glasson
单击功能区上,
J.J。
 
Concepcion
单击功能区上,
W。
 
Song
单击功能区上,
T.J。
 
电唱机
单击功能区上,
ACS Appl.Mater.Interfaces
 
2012
单击功能区上,
4个
单击功能区上,
1462
https://doi.org/10.1021/am201717x

Author notes

Conflict of interest statement。None declared。

安全访问权限许可证https://creativecommons.org/licenses/by/4.0/),which permits unrestricted reuse,distribution,and reproduction in any medium,provided the original work is properly cited。

Supplementary data