Skip to main content
存取键 NCBI Homepage 我的NCBI Homepage 主内容 主导航
Science。2021 Mar12;371(6534):1152–1153。
Published online2021 Jan29。 doi:10.1126/science.abg6105
PMCID:PMC7971771

Neutralization of SARS-CoV-2 lineage B.1.1.7 pseudovirus by BNT162b2vaccine-elicited human sera

Alexander Muik单击功能区上,1个 Ann-Kathrin Wallisch单击功能区上,1个 Bianca Sänger单击功能区上,1个 Kena A.Swanson单击功能区上,2 Julia Mühl单击功能区上,1个 Wei Chen单击功能区上,2 Hui Cai单击功能区上,2 Daniel Maurus单击功能区上,1个 Ritu Sarkar单击功能区上,2 Özlem Türeci单击功能区上,1个 Philip R.Dormitzer单击功能区上,2and,and我的生活1,3,*

关联数据

辅助材料

Vaccine protects against B1.1.7 variant

The severe acute respiratory syndrome coronavirus2(SARS-Cov-2)B1.1.7(VOC202012/01)variant that emerged in late2020in the United Kingdom has many changes in the spike protein gene。Three of these are associated with enhanced infectivity and transmissibility,and there are concerns that B.1.1.7 might compromise the effectiveness of the vaccine.Muiket al。compared the neutralization efficacy of sera from40subjects immunized with the BioNTech-Pfizer mRNA vaccine BNT162b2against a pseudovirus bearing the Wuhan reference strain or the lineage B.1.1.7 spike protein(see the Perspective by Altmann)et al。)。Serum was derived from40subjects in two age groups21days after the booster shot.The vaccine remained effective against B.1.1.7 with a slight but significant decrease in neutralization that was more apparent in participants under55years of age.Thus,the vaccine provides a significant“cushion”of proteagvaction is。

Science单击功能区上,this issue p.1152;see also p.1103

Despite the many genetic changes in the B.1.1.7(VOC202012/01)2020UK variant of SARS-COV-2,the BioNTech-Pfizer mRNA vaccine remains protective。

Abstract

Recently,anew severe acute respiratory syndrome coronavirus2(SARS-Cov-2)lineage called B.1.1.7(variant of concern:VOC202012/01),which is reported to spread more efficiently and faster than other strains,emerged in the United Kingdom.This variant has an unusually large number of mutations,with10amino acid changes in the spike(S)protein,raising concerns that its recognition by neutralizing antibodies may be affected.In this study, we tested SARS-CoV-2-S pseudoviruses bearing either the Wuhan reference strain or the B.1.1.7 lineage spike protein with sera of 40 participants who were vaccinated in a previously reported trial with the messenger RNA-based COVID-19vaccine BNT162b2.The immune sera had slightrebutly serd动力传动装置theB.1.1.7lineage pseudovirus.These data indicate that the B.1.1.7lineage will not escape BNT162b2-mediated protection。

In a phase3trial conducted in the United States,Argentina,Brazil,South Africa,Germany,and Turkey,the BioNTech-Pfizer mRNA vaccine BNT162b2was95%effective in preventing COVID-19through the data cutoff date of 14November2020(1个)。The severe acute respiratory syndrome coronavirus2(SARS-CoV-2)lineage B.1.1.7(variant of concern:VOC202012/01)was discovered to have emerged in the United Kingdom in September2020(2),以及it subsequently increased in prevalence,showed enhanced transmissibility,and spread to other countries and continents(3)。B.1.1.7 has a series of mutations in its spike(S)protein:ΔH69/V70,ΔY144,N501Y,A570D,D614G,P681H,T716I,S982A,and D1118H(H,His;V,Val;Y,Tyr;N,Asn;A,Ala;D,Asp;G,Gly;P,Pro;T,Thr;I,Ile;S,Ser。One of these mutations,N501Y,was of particular concern because it is located in the receptor binding site.The spike with this mutation binds more tightly to its cellreceptor,ACE-24个),and virus with this mutation has an increased host range that includes mice(5)。BNT162b2-immune sera neutralized SARS-Cov-2(USA/WA-1/2020background strain)with an introduced N501Y mutation asefficiently as they neutralized SARS-Cov-2without the mutation(6个)。Further,19pseudoviruses,each bearing a SARS-CoV-2S with a different mutation found in circulating virus strains,were also neutralized as efficiently as nonmutant SARS-CoV-2S-bearing pseudoviruses by BNT162b2-immune sera(7)。However,it was still unclear wherus with the full set of mutations in the lineage B.1.1.7spike,each of which may potentially interfere with antibody binding,would be neutralized efficiently by BNT162b2-immune sera。

To answer this question,we generated vesicular stomatitis virus(VSV)–SARS-Cov-2-Spseudoviruses bearing the Wuhan reference strain or the lineage B.1.1.7 spike protein(fig.S1)。40 participants in the previously reported German phase1/2 trial(7)-drawn from26younger(aged23to55years)and14older adults(aged57to73years)at7or21days after the booster immunization with30μg of BNT162b2(pVNT)50)]。The50%neutralization geometric mean titers(GMTs)of the sera against the SARS-CoV-2lineage B.1.1.7 spike–pseudotyped VSV for the younger adult group and the full analysis set were slightly but statistically significantly reduced compared with the GMTs against the Wuhan reference spike–SudeFig.1and table S1.GMTs were not significantly different for the older adult group.The calculated geometric mean ratio with95%confidence interval(CI)of the B.1.1.7 pseudotype and the Wuhan pseudotype GMTs was0.78(95%CI:0.68to0.89)for the younger group and 0.83(95%CI:0.65to)for to 0.89)in aggregate](Fig.2)。No statistical difference in the ratio was observed between the younger and the older vaccinated participants。

An external file that holds a picture,illustration,etc。Object name is371_1152_F1.jpg
50%pseudovirus neutralization titers(pVNT)50)of40sera from BNT162b2vaccine recipients against VSV-SARS-CoV-2-S pseudovirus bearing the Wuhan reference strain or lineage B.1.1.7 spike protein。

Sera fromn=26 younger adults(aged23to55 years;按索引排列和n=14older adults(aged57 to 73years;indicated by circles)drawn at either day29 or day43(7or21 days after vaccine dose two)were tested。Statistical significance of the difference between the neutralization of the VSV-SARS-COV-2-Spseudovirus bearing the Wuhan or lineage B.1.1.7 spike protein was calculated bya Wilcoxon matched-pairs signed rank test.Two-tailedPvalues are reported.GMTs and 95%CIs are indicated。

An external file that holds a picture,illustration,etc。Object name is371_1152_F2.jpg
pVNT50ratio of SARS-CoV-2 lineage B.1.1.7to Wuhan reference strain spike–pseudotyped VSV。

Triangles represent sera from younger adults(aged23to55years),and circles represent sera from older adults(aged57to73years)。Sera were drawn on either day29 or day43(7or21 days after vaccine dose two)。Geometric means of the pVNT50ratios of SARS-CoV-2lineage B.1.1.7 to Wuhan spike–pseudotyped VSV and 95%CIs are indicated.The difference in distribution of titer ratios between younger and older adults was tested for statistical significance with a two-tailed Mann-WhitneyUtest。

influenza virus vaccines,a20%reduced titer does not indicate a biologically relevant change in neutralization activity(8个单击功能区上,9)。The largely preserved neutralization of pseudoviruses bearing the B.1.1.7 spike by BNT162b2-immune sera makes it unlikely that the U.K.variant virus will escape BNT162b2-mediated protection。

A potential limitation of the work may be the use of anonreplicating pseudovirus system.However,previous reports have shown good concordance between pseudotype neutralization and SARS-CoV-2neutralization assays(10单击功能区上,11)。Still, concordance may vary between different SARS-CoV-2strains and remains to be demonstrated for the SARS-CoV-2B.1.1.7 lineage.Additional experiments will be needed to confirm efficient neutralization of B.1.1.7 lineage clinical isolates.This study has evaluated sera elicited by the recommended regimendes of aminical inical isolates.This study has evalisted sera and does not provide insight into neutralization if the recommended dosing regimen is not followed.The ongoing evolution of SARS-CoV-2necessitates continuous monitoring of the biological relevance of changes for maintained protection by the currently authorized vaccines.Unlike the protocol for influenza vaccines,the degree of reduction in neutralization that might indicate a need for astrain change has not yet been established for COVID-19vaccines.A previous study demonstrated that BNT162b2elicits both a polyepitopic CD8+T cell responsse to the encoded spike protein and virus-neutrazing7)。Given the multiple potential mediators of protection elicited by BNT162b2,it is possible that vaccine efficicacy could be preserved in the longer term,even with substantial losses of neutralization by vaccine-elicited sera.This view is further supported by the rapid onset of disease protection~12days the dors2 of,预应力混凝土预应力桩1个)。Without an established correlate of protection,clinical effectiveness data will be needed to provide definitive assessment of vaccine-mediated protection against viral variants。

Although sustained neutralization of the current B.1.1.7 variant is reasuring,preparation for potential COVID-19vaccine strain change is prudent.Adaptation of the vaccine to a new virus strain would be facilitated by the flexibility of mRNA-based vaccine technology。

Acknowledgments

We thank the BioNTech German clinical trial(NCT04380701,EudraCT:2000-001038-36)participants,from whom the postimmunization human sera were obtained.We thank the many colleagues at BioNTech and Pfizer who developed and produced the BNT162b2vaccine candidate.We thank S.Jägle and N.Beckmann for logistical support。Funding:This work was supported by BioNTech and Pfizer。授权:我的生活。,Ö。T.,A.M.,and P.R.D.conceived and conceptualized the work.K.A.S.and A.M.planned and supervised experiments.A.M.,A.-K.W.,J.M.,B.S.,H.C.,W.C.,and R.S.performed experiments.A.M.,D.M.,H.C.,and K.A.S。,Ö。T.,A.M.,P.R.D.,and K.A.S.interpreted data and wrote the manuscript.All authors supported the review of the manuscript。组件:我的生活。T.are management board members and employees at BioNTech SE.A.M.,A.-K.W.,J.M.,B.S.,and D.are employees at BioNTech SE.U。,Ö。T.,and A.M.are inventors on patents and patent applications related to RNA technology and COVID-19vaccine.U。,Ö。T.,A.M.,J.M.,and B.S.have securities from BioNTech SE.K.A.S.,W.C.,H.C.,R.S.,and P.R.D.are employees at Pfizer and may have securities from Pfizer。数据和materials availability:A table of the neutralization titers is provided in table S1.Materials are available from the authors under a material transfer agement with BioNTech.This work is licensed under a Creative Commons Attribution 4.0 International(CC BY4.0)license,which permits unrestricted use,distribution,and reproduction in any medium,provided the original work is properly cited.To view a copy of this license,visithttps://creativecommons.org/licenses/by/4.0/.This license does not apply to figures/photos/artwork or other content included in the article that is credited to a third party;obtain authorization from the rights holder before using such material。

辅助材料

science.sciencemag.org/content/371/6534/1152/suppl/DC1

矩阵和度量

Figs.S1 to S3

Tables S1 and S2

参考,参考12

MDAR Reproducibility Checklist

参考和注释

1。Polack F.P.,Thomas S.J.,Kitchin N.,Absalon J.,Gurtman A.,Lockhart S.,Perez J.L.,Pérez Marc G.,Moreira E.D.,Zerbini C.,Bailey R.,Swanson K.A.,Roychoudhury S.,Koury K.,Li P.,Kalina W.V.,Cooper D.,Frenck L.,TüreciÖ。,Nell H.,Schaefer A。,U nal S。,Tresnan D.B.,Mather S.,Dormitzer P.R.,ahin U.,Jansen K.U.,Gruber W.C.;C4591001Clinical Trial Group,Safety and Effficacy of the BNT162b2mRNA Covid-19 VaccineN.Engl.J.Med。 383单击功能区上,2603-2615(2020)。10.1056/NEJMoa2034577单击功能区上PMC free article]单击功能区上PubMed”对话框CrossRef]单击功能区上Google Scholar]
2。A.Rambaut,N.Loman,O.Pybus,W.Barclay,J.Barrett,A.Carabelli,T.Connor,T.Peacock,D.L.Robertson,E.Volz.org(2020);https://virological.org/t/preliminary-genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-the-uk-defined-by-a-novel-set-of-spike-mutations/563
3。E.Volz,S.Mishra,M.Chand,J.C.Barrett,R.Johnson,L.Geidelberg,W.R.Hinsley,D.J.Laydon,G.Dabrera,阿玛。O’Toole,R.Amato,M.Ragonnet-Cronin,I.Harrison,B.Jackson,C.V.Ariani,O.Boyd,N.J.Loman,J.T.McCrone,S.Gonçalves,D.Jorgensen,R.Myers,V.Hill,D.K.Jackson,K.Gaythorpe,N.Groves,J.Sillitoe,D.Kkiatkowinod.TheCows19 s UK(COG-UK)consortium,S.Flaxman,O.Ratmann,S.Bhatt,S.Hopkins,A.Gandy,A.Rambaut,N.M.Ferguson,Transmission of SARS-CoV-2 Lineage B.1.1.7in England:Insights from linking epidemiological and genetic data.medRxiv2020.12.30.20249034[Preprint]。4 January2021。10.1101/2020.12.30.20249034。10.1101/2020.12.30.20249034[CrossRef”对话框CrossRef]
4。Starr T.N.,Greaney A.J.,Hilton S.K.,Ellis D.,Crawford K.H.D.,Dingens A.S.,Navarro M.J.,Bowen J.E.,Tortorici M.A.,Walls A.C.,King N.P.,Veesler D.,Bloom J.D。,SARS-CoV-2 Receptor Binding Domain Revials Constraints on Folding and ACE2 Binding中心,中心 182单击功能区上,1295-1310.e20(2020)。10.1016/j.cell.2020.08.012单击功能区上PMC free article]单击功能区上PubMed”对话框CrossRef]单击功能区上Google Scholar]
5。Gu H.,Chen Q.,Yang G.,He L.,Fan H.,Deng Y.Q.,Wang Y.,Teng Y.,Zhao Z.,Cui Y.,Li Y.,Li X.F.,Li J.,Zhang N.,Yang X.,Chen S.,Guo Y.,Zhao G.,Wang X.,Luo D.Y.,Wang H.,Yang X.,Li,Han Y.,Han S.,Sheng X.,Jiang S.,Sun S.,Qin C.F.,Zhou Y。,SARS-COV-2in BALB/c mice for testing vaccine efficacyScience 369单击功能区上,1603-1607(2020)。10.1126/science.abc4730单击功能区上PMC free article]单击功能区上PubMed”对话框CrossRef]单击功能区上Google Scholar]
6。X.Xie,J.Zou,C.R.Fontes-Garfias,H.Xia,K.A.Swanson,M.Cutler,D.Cooper,V.D.Menachery,S.Weaver,P.R.Dormitzer,P.-Y.Shi Neutralization of N501Y mutant SARS-Cov-2by BNT162b2vaccine-elicited sera.bioRxi2021.0print[470]。7 January2021。10.1101/2021.07.425740[CrossRef]
7。U.Sahin,A.Muik,I.Vogler,E.Derhovanessian,L.M.Kranz,M.Vormehr,J.Quandt,N.Bidmon,A.Ulges,A.Baum,K.Pascal,D.Maurus,S.Brachtendorf,V.Lörks,J.Sikorski,P.Koch,R.Hilker,D.Becker,A.Grzner。.Tonigold,C.Boesler,C.Rosenbaum,L.Heesen,M.-C.Kühnle,A.Poran,J.Z.Dong,U.Luxemburger,A.Kemmer-Brück,D.Langer,M.Bexon,S.Bolte,T.Palanche,A.Schultz,S.Baumann,A.J.Mahiny,G.Boros,J.Reinholz,G.T.Szabó,K.Karikó,P.-Y.Shi,C.Fontes-Garfias,J.L.Perez,M.Cutler,D.Cooper,C.A.Kyratsous,P.R.Dormitzer,K.U.Jansen,Ö。Türeci,BNT162b2induces SARS-Cov-2-neutralising antibodies and T cells in humans.medRxiv2020.12.09.20245175[Preprint]。11December2020。10.1101/2020.12.09.20245175。单击功能区上CrossRef]
8。Smith D.J.,Lapedes A.S.,de Jong J.C.,Bestebroer T.M.,Rimmelzwaan G.F.,Osterhaus A.D.,Fouchier R.A。,influenza virusScience 305单击功能区上,371-376(2004)。10.1126/science.109721[PubMed”对话框CrossRef]单击功能区上Google Scholar]
9。Black S.,Nicolay U.,Vesikari T.,Knuf M.,Del Giudice G.,Della Cioppa G.,Tsai T.,Clemens R.,Rappuoli R。,安全防护措施Pediatr.Infect.Dis.J。 30单击功能区上,1081-1085(2011)。10.1097/INF.0b013e31823662[PubMed”对话框CrossRef]单击功能区上Google Scholar]
10。Case J.B.,Rothlauf P.W.,Chen R.E.,Liu Z.,Zhao H.,Kim A.S.,Bloyet L.-M.,Zeng Q.,Tahan S.,Droit L.,Ilagan M.X.G.,Tartell M.A.,Amarasinghe G.,Henderson J.P.,Miersch S.,Ustav M.,SidhuS.,Virgin Wating D.,Theel E.S.,Fremont D.H.,Diamond M.S.,Whelan S.P.J。,Neutralizing Antibody and Soluble ACE2 Inhibition of a Replication-Cpetent VSV-SARS-CoV-2and a Clinical Isolate of SARS-CoV-2中心吊车 28单击功能区上,475-485.e5(2020)。10.1016/j.chom.2020.06.021单击功能区上PMC free article]单击功能区上PubMed”对话框CrossRef]单击功能区上Google Scholar]
11。Vogel A.B.,Kanevsky I.,Che Y.,Swanson K.A.,Muik A.,Vormehr M.,Kranz L.M.,Walzer K.C.,Hein S.,Güler A.,Loschko J.,Maddur M.S.,Ota-Setlik A.,Tompkins K.,Cole J.,Lui B.G.,ZiegenhalsT,PlaschD,Daiske..,Fesser S.,Erbar S.,Bates F.,Schneider D.,Jesionek B.,Sänger B。,Wallisch A.-K.,Feuchter Y.,Jungingger H.,Krumm S.A.,Heinen A.P.,Adams-Quack P.,Schlereth J.,Schille S.,Kröner C.,de la Caridad Güimil Garcia R。,Hiller T.,Fischer L.,Sellers R.S.,Choudhary S.,Gonzalez O.,Vascotto F.,Gutman M.R.,Fontenot J.A.,Hall-Ursone S.,Brasky K.,Griffor M.C.,Han S.,Su A.H.,Lees J.A.,Nedoma N.L.,Mashalidis E.H.,Sahasrabudhe,Tav.kova D.,Singh G.,Fontes-Garfias C.,Pride M.,Scully I.L.,Ciolino T.,Obregon J.,Gazi M。,Carrion R.Jr.,Alfson K.J.,Kalina W.V.,Kaushal D.,Shi P.-Y.,Klamp T.,Rosenbaum C.,Kuhn A.N.,TüreciÖ。,Dormitzer P.R.,Jansen K.U.,Sahin U。,BNT162b vaccines protect rhesus macaques from SARS-CoV-2自然,自然10.1038/s41586-021-03275-y,(2021)。10.1038/s41586-021-03275-y[PubMed”对话框CrossRef]单击功能区上Google Scholar]
12。Berger Rentsch M.,Zimmer G。,A vesicular stomatitis virus replicon-based bioassay for the rapid and sensitive determination of multi-species type I interferonPLOS ONE 6个单击功能区上,e25858(2011)。10.1371/journal.pone.0025858单击功能区上PMC free article]单击功能区上PubMed”对话框CrossRef]单击功能区上Google Scholar]

Articles fromScience(New York,N.y.)预应力测量系统American Association for the Advance of Science