跳到主要内容

理论与现代应用

一类非线性耦合隐式切换奇异分数阶微分系统的稳定性分析第页-拉普拉斯语

摘要

摘要研究一类含拉普拉斯算子的非线性耦合隐式切换奇异分数阶微分系统解的存在性、唯一性和Hyers–Ulam稳定性\(φ{p}).所提出的问题由两种分数阶导数组成,即Riemann–Liouville分数阶导数β和Caputo分数阶导数σ,其中\(m-1<β),\(σ<m),\(m\in\{2,3,\dots\}\)在进行主要结果之前,借助格林函数将系统转换为等效积分形式。利用Schauder不动点定理和Banach压缩原理,证明了解的存在唯一性。主要结果通过实例进行了验证。

1介绍

分数微分方程(FDE)出现在应用数学的不同分支中。最近,人们已经清楚地认识到,涉及分数阶导数的系统和过程的数学模型经常出现在物理、化学、生物、粘弹性、控制假设、推测、流体动力学、流体力学、空气动力学、信息处理系统网络、,显著性和图像处理;看那些引人注目的专著[22,24,37]. 分数阶微分模型的研究与这样一个事实相关,即它们比对应的整数阶模型更准确地描述了实际现象。这种强烈兴趣背后的原因是,FDE为描述许多材料和工艺的记忆和继承属性提供了实用工具。因此,FDE近年来取得了重大发展;参见[5,6,13,28,30,32,34,35,41,45]了解更多详细信息。

分数阶模型解的存在性理论是FDE领域最有趣的研究领域之一,受到了研究者的广泛关注。上述部分已经对整数阶微分方程(DE)进行了广泛的研究。然而,对于任意顺序的DE,仍有许多方面需要进一步研究和研究。不同的数学家从不同的方向探索了FDE解的存在性[1,2,,9,12,17,21,27]. 另一个势在必行且更引人注目的研究领域是整数阶和非整数阶DE的稳定性分析,最近已引起了更多关注。第一次尝试是由乌拉姆本人发起的,后来在年得到了海尔斯的确认[19]. 这就是为什么这种稳定性被称为Ulam–Hyers(UH)稳定性。此外,Rassias引入了Ulam–Hyers–Rassias(UHR)稳定性;从乌拉姆的角度看最近报道的一些稳定性结果[4,7,20,29,33,38,42,43,44,47,48,49,50]. 需要注意的是,上述感兴趣的领域(存在性和稳定性)通常在黎曼-刘维尔和卡普托衍生品的背景下进行审议。上述结果也可用于研究Caputo-Fabrizio衍生物[10,11,14,15,16,23].

在微分方程和积分方程的求解中,不动点理论的概念非常重要。给出了不同的不动点定理,它们在上述方程中有许多应用。在中可以找到几个重要的不动点定理[18,39,46].

为了完整性和比较性,我们在此汇集了一些相关的结果。在[26],刘等。研究了分数阶Sturm–Liouville边值问题的存在性结果:

$$\textstyle\开始{cases}D_{0^{+}}^{\sigma}(\varPhi(\rho(t))){1-\sigma'}u(t)-b_{0}\lim_{t\rightarrow0}\varPhi^{-1}(t^{1-\sigma})\rho(t)D_{0^{+}}^{\sigma'}u\varPhi^{-1}(t^{1-\sigma})\rho(t)D_{0^{+}}^{\sigma'}u(0)+D_{0}\lim_{t\rightarrow1}t^{1-\sigma'}u(t)=0,\end{cases}$$

哪里\(D_{0^{+}}^{\sigma}\),\(D_{0^{+}}^{\sigma'}\)表示Riemann–Liouville分数阶导数σ\(西格玛)分别是,\(a_{0},b_{0{,c_{0neneneep,d_{0}\in\mathcal{R}\),同时\(\rho:(0,1)\rightarrow\mathcal{R}^{+}\)是给定的连续函数。功能\(f:(0,1)\times\mathcal{R}\times\ mathcal}\rightarrow\mathcal{R}\)是一个拟Carathéodory函数,在点处可能是奇异的\(t=0,1). The第页-拉普拉斯算子Φ定义为\(\varPhi(s)=|s|^{p-2}\)逆运算符表示为\(\varPhi^{-1}=|s|^{q-2}\),其中\(压裂{1}{p}+压裂{1{q}=1\)分析基于著名的Leray–Schauder替代原则。

在[25],Li研究了含有非线性积分边界条件的分数阶微分方程正解的存在性第页-形式的拉普拉斯算子:

$$\textstyle\boot{cases}D^{\alpha}(\phi _{p}({}^{c} D类^{σ}u(t)))+f(t,u(t^{c} D类^{\sigma}u(0))=[\phi{p}({}^{c} D类^{\sigma}u(0))]'=({}^{c} D类^{\sigma}u(1))=0,\\u''(0)=u'(1)=0^{1} u个(t) \varphi(t)\,dt,\结束{cases}$$

哪里\(D^{\alpha}\),\({}^{c} D类^{\西格玛}\)表示Riemann–Liouville和Caputo分数阶导数ασ分别为和\(φ=|s|^{p-2}\),\(p>1).功能φ满足\(\varphi:[0,1]\到\mathcal{R}^{+}\)具有\(L^{1}[0,1]\中的\varphi\),\(\int_{0}^{1}\varphi(t)\,dt>0\)\(\int_{0}^{1} t吨\varphi(t)\,dt>0\),\(a,b\in\mathcal{R}^{+}\)具有\(\int_{0}^{1}\varphi(t)\,dt<a\),其中\(b>a\)、和\(f:[0,1]\次(0,\infty)\到(0,\ infty是连续的。利用Avery–Henderson不动点定理,对上述问题得到了新的结果。

在[8]阿尔卡扎赞等。研究了一类形式奇异的非线性分数阶微分方程的存在性和稳定性结果:

$$\textstyle\begin{cases}{}^{c} D类^{\西格玛}[\phi_{p} D类^{β}u(t)]+F{1}(t)\psi{1}(t,u(t))=0,\\([\phi_{p} D类^{\beta}u(0)])^{(j)}=0,\dquad j=0,\dots,m-1,\\I^{k-\beta}(u(0))=0,\dquad k=2,3,\dots,m,\\D^{\delta}(u(1))=0,\end{cases}$$

哪里\(D^{\beta}\)\(^{c} D类^{\西格玛}\)分别表示Riemann–Liouville和Caputo分数阶导数βσ,\(m-1<β),\(\sigma\leq m\),\(m\in\{2,3,\dots\}\),\(1<delta\leq 2).非线性第页-拉普拉斯算子\(φ{p})在表单中具有表达式\(φ{p}(θ)=frac{theta}{|\theta|^{2-p}}),\(φ{p}(0)=0\),带反转\(\ phi _{q}\)也就是说,\(φ{q}=φ^{-1}_{p} \)这样的话\(压裂{1}{p}+压裂{1{q}=1\).非线性函数\(\psi_{1}\in\mathcal{C}[0,1]\)对于t吨,u个利用一些经典的不动点定理证明了主要结果。

本文的目的是使用[8]为了检验具有奇异形式的非线性耦合隐式切换奇异分数阶微分方程组解的存在性、唯一性以及不同类型的Hyers–Ulam稳定性:

$$\开始{aligned}\textstyle\begin{cases}{}^{c} D类^{\西格玛}[\phi_{p} D类^{\beta}u(t)]+\mathcal{F}(F)_{1} (t)\psi{1}(t,u(t),{}^{c} D类^{\rho}[\phi_{p} D类^{\beta}v(t)])=0,quad t\in\mathrm{J}={]0,1[},\\{}^{c} D类^{\rho}[\phi_{p} D类^{\beta}v(t)]+\mathcal{F}(F)_{2} (t)\psi{2}(t,{}^{c} D类^{\西格玛}[\phi_{p} D类^{β}u(t)],v(t))=0,四t在\mathrm{J}中,([\phi_{p} D类^{\beta}u(0)])^{(j)}=0,\quad j=0,1,\dots,m-1,\\([\phi_{p} D类^{\beta}v(0)])^{(j)}=0,\quad j=0,1,\dots,m-1,\\I^{k-\beta{(u(0))=I^{k-\betaneneneep(v(0$$
(1.1)

哪里\(D^{\beta}\)\({}^{c} D类^{\西格玛}\)分别表示Riemann–Liouville和Caputo分数阶导数βσ,\(m-1<β),\(\sigma\leq m\),\(m\in\{2,3,\dots\}\),\(1<delta\leq 2)、和\(\mathcal{F}(F)_{1} (\cdot)\),\(\mathcal{F}(F)_{2} (\cdot)\)是上的线性有界运算符\(\mathcal{R}\)此外,非线性第页-拉普拉斯算子\(φ{p})在表单中具有表达式\(φ{p}(θ)=frac{theta}{|\theta|^{2-p}}),\(φ{p}(0)=0\),带反转运算符\(\ phi _{q}\)也就是说,\(φ{q}=φ^{-1}_{p} \)这样的话\(压裂{1}{p}+压裂{1{q}=1\).非线性函数\(\psi_{1},\psi_{2}\in\mathcal{C}[0,1]\)对于t吨,u个,v(v)

目前的工作安排如下:在Sect。 2,我们将介绍一些基本的定义和断言,这些定义和断言将在接下来的部分中使用。在教派。 我们陈述并证明了我们的主要存在性结果。我们在Section中讨论了所建议问题的Ulam稳定性。 4举例说明了与建议结果的一致性。

2基本定义和断言

在这里,我们陈述了一些基本事实、定义和引理,它们将贯穿本文。

\(\mathrm{C}(\mathrm{J},\mathcal{X})\)是形式所有连续功能的空间\(u(t):\mathrm{J}\rightarrow\mathcal{X}\),\(在数学中{J})很明显\(\mathrm{C}(\mathrm{J},\mathcal{X})\)是具有范数的Banach空间\(\|u\|=\max\{|u(t)|,t\in\mathrm{J}\}\)此外,我们了解到\(\mathrm{C}(\mathrm{J},\mathcal{X})\times\mathrm{C}(\mathr m{J{,\mathcal{X})\)是具有范数的Banach空间\(\|(u,v)\|=\|u\|+\|v\|\)

定义2.1

([22])

\(\alpha\in\mathcal{R}^{+}\)然后是函数在Riemann–Liouville意义下的非整数阶积分\(\theta:\mathbf{\mathsf{J}}\rightarrow\mathcal{R}\)表示为

$$开始{对齐}\mathcal{I}^{\alpha}\theta(t)=\frac{1}{\varGamma(\alpha)}\int_{0}^{t}(t-s)^{\alpha-1}\theta\,ds,\end{aligned}$$

这样,右边的积分是在上逐点定义的\(\mathcal{R}^{+}\)

定义2.2

([22])

\(\alpha\在(n-1,n]\n)具有\(n-1=[\alpha]\)然后是Caputo意义下的非整数阶导数\(\theta:[a,b]\rightarrow\mathcal{R}\)声明为

$$开始{aligned}\frac{d^{\alpha}}{dt^{\alpha}}\theta(t)=\int_{a}^{t}\frac{(t-s)^{n-\alpha-1}}{\varGamma(n-\alfa)}\biggl(\frac}d\alpha}{ds^{n}}\ttheta(s)\biggr)\,ds.\end{aligned}$$

特别是,如果第页在间隔上定义\([a,b]\)\(在(0,1]\)中为α,然后

$$开始{aligned}\frac{d^{\alpha}}{dt^{\alpha}}\theta(t)=\frac{1}{\varGamma(1-\alpha)}\int_{a}^{t}\frac{\theta'(s)}{(t-s)^{\阿尔pha}}\,ds,\quad\text{where}\theta`(s)=\frac{d\theta(s){ds}。\结束{对齐}$$

需要注意的是,右边的积分是逐点定义的\(\mathcal{R}^{+}\)

定义2.3

([22])

Riemann–Liouville意义下的非整数阶导数σ对于函数\(\theta:(0,\infty)\rightarrow\mathcal{R}^{+}\)由定义

$$D^{\sigma}_{1^{+}}\θ$$

其中右边的积分是逐点连续的,并定义在区间上\((0,\infty)\)\(\lceil\sigma\rceil\)是的整数部分σ

引理2.4

([8])

\(σ\ in(m-1,m]\),\(数学{C}^{m-1}中的θ), \({}^{c} D类^{\西格玛}\) 是Caputo分数导数然后

$$ {}^{c} 我^{\西格玛}{}^{c} D类^{西格玛}θ(t)=\theta(t)+b{1}+b_{2} t吨+b条_{3} t吨^{2} +\cdots+b_{m} t吨^{m-1}$$

哪里 \(b_{i}\in\mathcal{R}\),\(i=1,2,\点m \),\(m=[\sigma]+1)

引理2.5

([8])

\(σ\ in(m-1,m]\),\(数学{C}^{m-1}中的θ), \(D^{\sigma}\) 是Riemann–Liouville分数导数然后

$$I^{\sigma}D^{\sigma}θ(t)=\theta(t)+c_{1} t吨^{\西格玛-1}+c_{2} t吨^{\sigma-2}+\cdots+c_{m} t吨^{\西格玛-m}$$

哪里 \(c{i}\in\mathcal{R}\),\(i=1,2,\点m \),\(m=[\sigma]+1)

引理2.6

([36],Arzelä–Ascoli定理)

操作员 \(\mathcal{H}:\mathcal{乙}_{r} \cap(\bar{\varOmega}_{1}/\varOmega_{2})\rightarrow\mathcal{乙}_{r} \) 称为紧当且仅当 \(\mathcal{H}\) 一致有界且不连续

引理2.7

(Schauder不动点定理[39])

\(\mathcal{S}\neq\emptyset\) 是Banach空间的凸闭子集 \(\mathcal{X}\) \(\phi:\mathcal{S}\rightarrow\mathcal{S}\) 是一个连续的操作员,这样 \(\phi(\mathcal{S})\) 是相对紧凑的 \(\mathcal{X}\)然后是操作员系统 ϕ 中至少有一个固定点 \(\数学{S}\)

引理2.8

([27])

\(\phi_{p}:\mathcal{R}\rightarrow\mathcal{R}\) 是非线性的 第页-拉普拉斯算子,那就是,\(\phi_{p}(\zeta)=|\zeta|^{p-2}\zeta\),\(\zeta\in\mathcal{R}\)然后

$$\frac{d\phi_{p}}{d\zeta}=(p-1)\vert\zeta\vert^{p-2}$$

算子的一些基本性质\(φ{p})具体如下:

\((\mathcal){答}_{1})\)以下为:

如果\(1<p \leq 2),\(泽塔{1}),\(\泽塔{2}>0\),\(0<\varrho\leq|\zeta_{1}|\),\(|\泽塔{2}|\),然后

$$\bigl\vert\phi{p}(\zeta{1})-\phi{p{}(\ zeta{2})\bigr\vert\leq(p-1)\varrho^{p-2}\vert\zeta_{1}-\泽塔{2}$$
\((\mathcal){答}_{2})\)以下为:

对于\(p>2),\(|\zeta_{1},\zeta_2}|\leq\varrho*\),然后

$$\bigl\vert\phi{p}(\zeta{1})-\phi{p{}(\ zeta{2})\bigr\vert\leq(p-1)\varrho^{p-2}\vert\zeta_{1}-\泽塔{2}$$

引理2.9

([31])

\(\mathcal{X}\) 成为巴拿赫空间 \(\mathcal{B}\子集\mathcal{X}\) 做一个不空虚的人,关闭,和凸集如果地图 \(\mathcal{H}:\mathcali{B}\rightarrow\mathcal{B}\) 是紧凑的,然后 \(\mathcal{H}\) 有一个固定点

定义2.10

(乌尔斯[40],定义2)

\(\mathcal{X}\)成为巴拿赫空间\(\varUpsilon_{1},\varUpsilon_{2}:\mathcal{X}\times\mathcali{X}\rightarrow\mathcal{X}\)是两个操作员。然后是系统

$$\开始{aligned}\textstyle\开始{cases}y(t)=\varUpsilon_{1}(y,z)(t),\\z(t)=\varUpsilon_{2}(y,z)$$
(2.1)

如果存在常数,则称为Hyers–Ulam稳定\(\digamma{j}(j=1,2,3,4)>0)具有\(α{j}(j=1,2)>0),对于每个解决方案\((y^{*},z^{*{)\in\mathcal{X}\times\mathcal{X}\)不等式

$$\begin{aligned}\textstyle\begin{cases}\Vert y^{*}-\varPhi(y^{},z^{*{)\Vert\leq\alpha_{1},\\Vert z^{**}-\varPsi(y^},z ^{*neneneep)\Vert\leq\alpha_{2},\end{casesneneneep \displaystyle\end{alinged}$$
(2.2)

有一个解决方案\((\widetilde{y},\widetelde{z})\in\mathcal{X}\times\mathcal{X}\)系统的(2.1),满足

$$\begin{aligned}\textstyle\begin}-cases}\Verty^{*}-\widetilde{y}\Vert\leq\digamma_{1}\alpha_{1{+\digama_{2}\alfa_{2{,\\Vertz^{*{-\wide tilde{z}\Vert_leq\diagamma_}3}\ alpha_}+\digamma_{4}\algama_}。\结束{cases}\displaystyle\end{aligned}$$
(2.3)

定义2.11

\({J}),其中\(J=1,2,\点,k\),是矩阵的特征值(实数或复数)\(\digamma\in\varpi^{k\乘以k}\).然后是术语光谱半径\(\alpha(\digamma)\)属于\(\digamma\in\varpi^{k\乘以k}\)定义为

$$\begin{aligned}\alpha(\digamma)=\max\bigl\{vert\nu_{J}\vert\text{表示}J=1,2,\dots,k\bigr\}。\结束{对齐}$$

众所周知,矩阵对应的系统\(\digamma\in\varpi^{k\乘以k}\)将收敛到零,如果\(\alpha(\digamma)\)小于1。

定理2.12

(乌尔斯[40],定理4)

考虑一个Banach空间 \(\mathcal{X}\) 并定义两个运算符 \(\varUpsilon_{1},\varUpsilon_{2}:\mathcal{X}\times\mathcali{X}\rightarrow\mathcal{X}\) 这样的话

$$\begin{aligned}\textstyle\begin{cases}\Vert\varUpsilon_{1}(\mathbf{y},\mathbf{z}{y}(y)-\mathbf{y}^{*}\Vert+\digamma_{2}\Vert\mathbf{z}-\mathbf{z}^{*}\Vert,\\\\Vert\varUpsilon _{2}(\mathbf{y},\mathbf{z})-\varUpsilon _{2}(\mathbf{y}^{*},\mathbf{z}^{*})\Vert\leq\digamma _{3}\Vert\mathbf{y}(y)-\mathbf{y}^{*}\Vert+\digamma_{4}\Vert\mathbf{z}-\mathbf{z}^{*}\垂直。\结束{cases}\displaystyle\end{aligned}$$

如果矩阵的谱半径

$$\begin{aligned}\digamma=\begin{pmatrix}\digamma_{1}和\digama_{2}\\digamma_{3}和\ digamma_{4}\end{pmartrix}\ end{aligned}$$

小于一,然后是与操作系统相关的不动点(2.1)海尔斯-乌拉姆稳定吗

存在结果

本节专门研究解决方案的存在性。第一个结果借助格林函数将所提出的问题转化为等效积分形式。

定理3.1

\(磅/平方英寸{1}),\(psi{2}) 是可积函数 \(u,v\in\mathrm{C}(\mathrm{J},\mathcal{X}) 满足(1.1).然后,对于 \(3<西格玛),\(\beta,\rho\leq m\),\(m\geq 4),切换耦合系统的求解

$$\textstyle\begin{cases}{}^{c} D类^{\西格玛}[\phi_{p} D类^{\beta}u(t)]+\mathcal{F}(F)_{1} (t)\psi{1}(t,u(t),{}^{c} D类^{\rho}[\phi_{p} D类^{β}v(t)])=0,\quad t在\mathrm{J}中,\\{}^{c} D类^{\rho}[\phi_{p} D类^{\beta}v(t)]+\mathcal{F}(F)_{2} (t)\psi{2}(t,{}^{c} D类^{\西格玛}[\phi_{p} D类^{β}u(t)],v(t))=0,四t在\mathrm{J}中,([\phi_{p} D类^{\beta}u(0)])^{(j)}=0,\quad j=0,1,\dots,m-1,\\([\phi_{p} D类^{\beta}v(0)])^{(j)}=0,\quad j=0,1,\dots,m-1,\\I^{k-\beta{(u(0)$$
(3.1)

等价于积分方程

$$\begin{aligned}u(t)=&\int_{0}^{1}\mathcal{G}^{beta}(t,s)\phi_{q}\biggl(\nint_{0}^{s}(s-\tau)^{sigma-1}\mathcal{F}(F)_{1} (τ)\psi{1}\bigl(τ,u(\tau),{}^{c} D类^{\sigma}\bigl(\phi_{p} D类^{\beta}u(\tau)\bigr)\,d\tau\biggr)\,ds\end{对齐}$$

$$\begin{aligned}v(t)=&\int_{0}^{1}\mathcal{G}^{beta}(t,s)\phi_{q}\biggl(\int_}0}^}s}(s-\tau)^{sigma-1}\mathcal{F}(F)_{2} (τ)\psi{2}\bigl(τ,{}^{c} D类^{\rho}\bigl(\phi_{p} D类^{\beta}u(\tau)\bigr),v(\tau)\bigr)\,d\tau\biggr)\,ds,\end{aligned}$$

哪里 \(\mathcal{G}^{beta}(t,s)\) 是格林函数,由

$$\mathcal{G}^{\beta}(t,s)=\textstyle\beart{cases}\frac{-(t-s)^{\beta-1}}{\varGamma(\beta)}-\frac{t^{\beta-1}(1-s)^{\beta-\delta-1}}{\varGamma(\beta)},&s\leq t\leq 1,t\in\mathrm{J}=(0,1),\\frac{-t^{\beta-1}(1-s)^{\beta-\delta-1}}伽马(β)},&t\leq s\leq 1。\结束{cases}$$
(3.2)

证明

\(u,v\in\mathcal{C}(\mathrm{J},\mathcal{X})是…的解决方案(3.1),然后

$$\textstyle\begin{cases}{}^{c} D类^{\西格玛}[\phi_{p} D类^{\beta}u(t)]+\mathcal{F}(F)_{1} (t)\psi{1}(t,u(t),{}^{c} D类^{\rho}[\phi_{p} D类^{β}v(t)])=0,\quad t在\mathrm{J}中,\\{}^{c} D类^{\rho}[\phi_{p} D类^{\beta}v(t)]+\mathcal{F}(F)_{2} (t)\psi{2}(t,{}^{c} D类^{\西格玛}[\phi_{p} D类^{β}u(t)],v(t))=0,四t在\mathrm{J}中,([\phi_{p} D类^{\beta}u(0)])^{(j)}=0,\quad j=0,1,\dots,m-1,\\([\phi_{p} D类^{\beta}v(0)])^{(j)}=0,\quad j=0,1,\dots,m-1,\\I^{k-\beta{(u(0))=I^{k-\betaneneneep(v(0。\结束{cases}$$

$$ {}^{c} D类^{\sigma}(\phi_{p}\bigl(D^{\beta}u(t)\bigr)+\mathcal{F}(F)_{1} (t)\psi{1}\bigl(t,u(t),{}^{c} D类^{\rho}\bigl[\phi_{p} D类^{\beta}v(t)\bigr]\bigr)=0$$
(3.3)

哪里\(m-1<\西格玛<m\),\(m-1<\beta\leq m\),\(在数学中{J}).使用引理2.4,我们有

$$\begin{aligned}\phi_{p}\bigl(D^{beta}u(t)\bigr)=&-b_{0}-b_{1} t-b型_{2} t吨^{2}-\cdot-b_{m-1}吨^{m-1}\\&{}-\frac{1}{\varGamma(\sigma)}\int_{0}^{t}(t-s)^{\sigma-1}\mathcal{F}{1}(s)\psi_{1}\bigl(s,u(s),{}^{c} D类^{\rho}\bigl[\phi_{p} D类^{\beta}v(s)\bigr]\bigr)。\结束{对齐}$$
(3.4)

这个\((φ{p}(D^{beta}u(t)))^{(0)}|{t=0}=0\)暗示着\(-b{0}=0\)\(b_{0}=0\)因此(3.4)成为

$$\begin{aligned}\phi_{p}\bigl(D^{beta}u(t)\bigr)=&-b_{1} t-b型_{2} t吨^{2}-\cdot-b_{m-1}吨^{m-1}\\&{}-\frac{1}{\varGamma(\sigma)}\int_{0}^{t}(t-s)^{\sigma-1}\mathcal{F}{1}(s)\psi_{1}\bigl(s,u(s),{}^{c} D类^{\rho}\bigl[\phi_{p} D类^{\beta}v(s)\bigr]\bigr)。\结束{对齐}$$
(3.5)

差异化(3.5)关于t吨,我们有

$$\开始{aligned}\bigl(\phi_{p}\bigle(D^{beta}u(t)\bigr)\biger)'=&-b_{1} -2b个_{2} t吨-\cdots-(m-1)b_{m-1}吨^{m-2}\\&{}-\frac{1}{\varGamma(\sigma-1)}\int_{0}^{t}(t-s)^{\sigma-2}\mathcal{F}(F)_{1} (s)\psi_{1}\bigl(s,u(s),{}^{c} D类^{\rho}\bigl[\phi_{p} D类^{\beta}v(s)\bigr]\bigr)。\结束{对齐}$$

使用条件\((φ_{p}(D^{\beta}u(t)))'|_{t=0}=0\)暗示着\(b{1}=0\)类似地,通过应用条件\((φ{p}(D^{beta}u(t)))^{(j)}|{t=0}=0\),我们得到\(b{j}=0\),\(所有j=2,3,点m)因此(3.4)成为

$$\begin{aligned}D^{\beta}u(t)=&-\phi_{p}^{-1}(I^{\sigma}\bigl(\mathcal{F}(F)_{1} (t)\psi{1}\bigl(t,u(t),{}^{c} D类^{\rho}\bigl(\phi_{p} D类^{\beta}v(t)\bigr)\biger)\\=&\phi_{q}(I^{\sigma}\mathcal{F}(F)_{1} (t)\psi{1}\bigl(t,u(t),{}^{c} D类^{\rho}\bigl(\phi_{p} D类^{\beta}v(t)\bigr)\biger)。\结束{对齐}$$

应用\(我^{\beta}\)并使用引理2.5,我们有

$$\开始{aligned}u(t)=&-d_{1} t吨^{\β-1}-d_{2} t吨^{\beta-2}-\cdots-d_{m} t吨^{\beta-m}\\&{}-\frac{1}{\varGamma(\beta)}\int_{0}^{t}(t-s)^{\beta-1}\phi_{q}(I^{\sigma}\mathcal{F}(F)_{1} (t)\psi{1}\bigl(t,u(t),{}^{c} D类^{\rho}\bigl(\phi_{p} D类^{\beta}v(t)\biger)\bigr)。\结束{对齐}$$
(3.6)

\(I^{k-\beta}u(t)|_{t=0}=0\)对于\(k=2,3,点,米),我们获得\(d_{2}=d_{3}=\cdots=d_{m}=0\)、和使用\(D^{\delta}u(t)|_{t=1}=0\),我们得到

$$d_{1}=-\frac{\varGamma(\beta-\delta)}{\varGamma(\beta)}\phi _{q}(I^{\sigma}\mathcal{F}(F)_{1} (t)\psi{1}\bigl(t,u(t),{}^{c} D类^{\rho}\bigl(\phi_{p} D类^{\beta}v(t)\bigr)\biger)|_{t=1}$$

由此可见

$$开始{对齐}u(t)&=-\frac{1}{\varGamma(\beta)}\int_{0}^{t}(t-s)^{\beta-1}\phi_{q}\biggl(int_{0}^{s}(s-\tau)^{\sigma-1}\mathcal{F}(F)_{1} (τ)\psi{1}\bigl(τ,u(\tau),{}^{c} D类^{\rho}\bigl(\phi_{p} D类^{\beta}v(\tau)\biger)\bigr)\,d\tau\biggr)\,ds\\&\quad{}-\frac{t^{\beta-1}}{\varGamma(\beta)}\int_{0}^{1}(1-s){F}(F)_{1} (τ)\psi{1}\bigl(τ,u(\tau),{}^{c} D类^{\rho}\bigl(\phi_{p} D类^{\beta}v(\tau)\bigr)\,d\tau\biggr{F}(F)_{1} (τ)\psi{1}\bigl(τ,u(\tau),{}^{c} D类^{\rho}\bigl(\phi_{p} D类^{\beta}v(\tau)\bigr)\,d\tau\biggr)\,ds.\end{aligned}$$

以类似的方式,我们可以得出这样的结论:

$$v(t)=\int_{0}^{1}\mathcal{G}^{beta}(t,s)\phi_{q}\biggl{F}(F)_{2} (τ)\psi{2}\bigl(τ,{}^{c} D类^{\rho}\bigl(\phi_{p} D类^{\beta}u(\tau)\bigr),v(\teau)\biger)\,d\tau\biggr)\,ds$$
(3.7)

哪里\(\mathcal{G}^{beta}(t,s)\)是上面定义的格林函数。□

引理3.2

([8])

格林函数 \(\mathcal{G}^{beta}(t,s)\) 满足以下属性以下为:

\((\mathcal){P}(P)_{1})\)以下为:

\(\mathcal{G}^{beta}(t,s)>0\),\(\对于所有0<s \),\(t<1);

\((\mathcal){P}(P)_{2})\)以下为:

\(\mathcal{G}^{beta}(t,s)\) 是一个非递减函数,并且 \(最大值{t\in(0,1)}\mathcal{G}^{beta}(t,s)=\mathcal{G}^{beta}(1,s)\);

\((\mathcal){P}(P)_{3})\)以下为:

\(t^{\beta-1}\max_{t\in(0,1)}\mathcal{G}^{beta}(t,s)\leq\mathcal{G}^{beta}(t,s)\) 对于 \(0<s),\(t<1)

我们引入以下假设:

\((\mathbf{高}_{1})\)以下为:

功能\(\psi_{1},\psi_2}:\mathrm{J}\times\mathcal{X}\times \mathcal{X}\rightarrow\mathcali{X}\)是连续的,并且\(对于所有u,v,\overline{u},\overline{v}\in\mathcal{X}\)\(在数学中{J}),存在\(\mathcal{米}_{\psi_{1}},\mathcal{米}_{\psi_{2}},\mathcal{M'}{\psi{1}}这样的话

$$\bigl\Vert\psi_{1}(t,u,v)-\psi_}(t,\overline{u},\overrine{v})\bigr\Vert\leq\mathcal{米}_{\psi_{1}}\垂直u-\上划线{u}\垂直+\mathcal{M'}{\psi.{1}{\垂直v-\上划线}\垂直$$

$$\bigl\Vert\psi_{2}(t,u,v)-\psi_2}(t,\overline{u},\overrine{v})\bigr\Vert\leq\mathcal{米}_{\psi_{2}}\垂直u-\上划线{u}\垂直+\mathcal{M'}{\psi.{2}{\垂直v-\上划线}\垂直$$
\((\mathbf{高}_{2})\)以下为:

功能\(\psi_{1},\psi_2}:J\times\mathcal{X}\times\ mathcal}\rightarrow\mathcal{X}\)是完全连续的,\(对于所有u,v\in\mathcal{X})\(在数学中{J}),存在非递减的连续线性函数\(\mu_{\psi_{1}},\mu_}\psi_2}}:\mathcal{R}^{+}\rightarrow\mathcal{R}\)这样的话

$$\bigl\Vert\psi_{1}(t,u,v)\bigr\Vert\leq\phi_{p}\bigl$$

$$\bigl\Vert\psi_{2}(t,u,v)\bigr\Vert\leq\phi_{p}\bigl$$

哪里

$$\begin{aligned}和\sup\bigl\{\mu_{\psi_{1}}(t),t\in\mathrm{J}\bigr\}=\mu_}\psi_1}},\qquad\sup\bigl\{\ mu_{\ psi_2}}}(t),t\in\mathrm{J}\bigr\}=\mu'{\psi{1}},\qquad\sup\bigl\{\mu'{\psi.{2}}。\结束{对齐}$$
\((\mathbf{高}_{3})\)以下为:

功能\(\mathcal{F}(F)_{1} ,\mathcal{F}_{2}:(0,1)\rightarrow\mathcal{X}\)非零且连续

$$\垂直\ mathcal{F}(F)_{1} \Vert=\max_{t\in\mathrm{J}}\Vert\mathcal{F}(F)_{1} \vert<\infty ^{+},\qquad\vert\mathcal{F}(F)_{2} \Vert=\max_{t\in\mathrm{J}}\Vert\mathcal{F}(F)_{2} \vert<\infty^{+}$$

\(\mathcal{乙}_{r} \子集\mathbf{B}=\mathrm{C}是形式非负函数的锥

$$\马塔尔{乙}_{r} =\Bigl\{(u,v)\in\mathbf{B},\min_{t\in\mathrm{J}}\Bigl(u(t)+v(t)\bigr$$

$$\varOmega(r)=\biggl\{\bigl\Vert(u,v)\bigr\Vert<r,\Vert u\Vert<\frac{r}{2},\Vertv\Vert<\frac}{2{\biggr\},\ quad\partial\varOmega(r$$

考虑操作员\(\mathcal{H^{*}}=(\mathcal{H_{*}{{1},\mathca{H^}}{{2}):\mathcal{乙}_{r} /{(0,0)}\右箭头{\mathbf{B}}\),其中\(\mathcal{H^{*}}_{1}\),\(\mathcal{H^{*}}_{2}\)定义如下:

$$\begin{aligned}\textstyle\begin}{cases}\mathcal{H^{*}}_{1}(u,v)(t)\\quad=\int_{0}^{1}\mathcal{G}^{beta}(t,s)\phi_{q}(\frac{1}{\sigma}\int_}0}^}s}(s-\tau){1}(τ,u(τ),{}^{c} D类^{\rho}(\phi_{p} D类^{\beta}v(\tau))),d\tau),ds,\\mathcal{H^{*}}_2}(u,v)(t)\\quad=\int_{0}^{1}\mathcal}G}^{beta}(t,s)\phi_{q}(\frac{1}{\rho}\int_0}^s}(s-\tau)^{\rho-1}\mathcal{F}(F)_{2} (τ)\psi_{2}(τ,{}^{c} D类^{\sigma}(\phi_{p} D类^{β}u(\tau)),v(\tau)),d\tau),ds.\end{cases}\displaystyle\end{aligned}$$
(3.8)

定理3.3

假设 \((\mathbf{高}_{1})\) \((\mathbf{高}_{3})\) 持有然后(1.1)至少有一个解决方案

证明

对于任何\((u,v)在上划线{(r{2})}/\varOmega(r{1}),并使用引理3.2,我们有

$$开始{对齐}[b]&\mathcal{H^{*}}_1}(u,v)(t)\\&\quad=\int_{0}^{1}\mathcal{G}^{beta}(t,s)\phi_{q}\biggl(\frac{1}{\sigma}\int_}0}^}s}(s-\tau){1}\bigl(τ,u(τ),{}^{c} D类^{\rho}\bigl(\phi_{p} D类^{\beta}v(\tau)\bigr)\,d\tau \biggr)\,ds\\&&quad\leq\int _{0}^{1}\mathcal{G}^{\beta}(1,s)\phi _{q}\biggl(\frac{1}{\sigma}\int _{0}^{s}(s-\tau)^{\sigma-1}\mathcal{F}(F)_{1} (τ)\psi{1}\bigl(τ,u(\tau),{}^{c} D类^{\rho}\bigl(\phi_{p} D类^{\beta}v(\tau)\bigr)\,d\tau\biggr)\,ds\end{对齐}$$
(3.9)

$$开始{对齐}[b]&\mathcal{H^{*}}_1}(u,v)(t)\\&\quad=\int_{0}^{1}\mathcal{G}^{beta}(t,s)\phi_{q}\biggl(\frac{1}{\sigma}\int_}0}^}s}(s-\tau){1}\bigl(τ,u(τ),{}^{c} D类^{\rho}\bigl(\phi_{p} D类^{\beta}v(\tau)\biger)\bigr)\,d\tau\biggr)\,ds\\&\quad\geqt^{\beta-1}\int_{0}^{1}\mathcal{G}^{beta}(1,s)\\&\qquad{}\times\phi_{q}\biggl{F}(F)_{1} (τ)\psi{1}\bigl(τ,u(\tau),{}^{c} D类^{\rho}\bigl(\phi_{p} D类^{\beta}v(\tau)\bigr)\,d\tau\biggr)\,ds.\end{aligned}$$
(3.10)

借助不平等(3.7)和(3.8),我们有

$$\mathcal{H^{*}}_{1}(u,v)(t)\geq t^{\beta-1}\bigl\Vert\mathcal{H^{*}}_{1}(u,v)(t)\bigr\Vert$$
(3.11)

同样,我们可以获得

$$\mathcal{H^{*}}_{2}(u,v)(t)\geqt^{\beta-1}\bigl\Vert\mathcal}H^{**}}_2}(u,v)(t)\bigr\Vert$$
(3.12)

组合(3.11)和(3.12),我们得到

$$\mathcal{H^{*}}(u,v)(t)\geqt^{\beta-1}\bigl\Vert\mathcal}(u^{*{}})(t,v)\bigr\Vert$$

因此\(\mathcal{H^{*}}:\上划线{\varOmega(r_{2})}/\varOmega(r_1})\rightarrow{\mathbf{B}}\)已关闭。

关于算子的一致有界性\(\mathcal{H^{*}}\),我们认为

$$开始{对齐}和\bigl\Vert\mathcal{H^{*}}(u,v)(u,v)(t)\vert+\sup_{t\in\mathrm{J}}\bigl\vert\mathcal{H^{*}}_2}(u,v)(t)\bigr\vert\\&\quad\leq\sup_}\tin\mathr m{J{}\biggl\vert\int_{0}^{1}\mathcal}G}^{beta}(t,s)\&\qquad\}}\times\phi_{q}\bigl(\frac{1}{\varGamma(\sigma)}\int_{0}^{s}(s-\tau)^{\sigma-1}\mathcal{F}(F)_{1} (τ)\psi{1}\bigl(τ,u(\tau),{}^{c} D类^{\rho}\bigl(\phi_{p} D类^{\beta}v(\tau)\biger)\bigr)\,d\tau\biggr)\,ds\biggr\vert\\&\qquad{}+\sup_{t\in\mathrm{J}}\biggl\vert\int_{0}^{1}\mathcal{G}{\beta}(t,s)\\&\qquid{}\times\phi_{q}\bigl(\frac{1}{\varGamma(\rho)}\int_{0}^{s}(s-\tau)^{\rho-1}\mathcal{F}(F)_{2} (τ)\psi{2}\bigl(τ,{}^{c} D类^{\sigma}\bigl(\phi_{p} D类^{\beta}u(\tau)\bigr),v(\teau)\biger)\,d\tau\biggr)\,ds\biggr\vert\\&\quad\leq\int_{0}^{1}\bigl\vert\mathcal{G}^{beta}(1,s)\biger\vert\\&\qquad{}\times\phi_{q}\biggl(\frac{1}{\varGamma(\sigma)}\int_0}^s}(s-\tau)^{\sigma-1}\bigl\vert\mathcal{F}(F)_{1} (\tau)\bigr\Vert\bigl\Vert\psi_{1}\bigl(\tau,u(\tau),{}^{c} D类^{\rho}\bigl(\phi_{p} D类^{\beta}v(\tau)\biger)\bigr\Vert\,d\tau\biggr)^{\rho-1}\bigl\Vert\mathcal{F}(F)_{2} (tau)\bigr\Vert\bigl\Vert\psi_{2}\bigl(\tau,{})^{c} D类^{\sigma}\bigl(\phi_{p} D类^{β}u(\tau),v(\tao)\biger)\bigr\Vert\,d\tau\biger \\&\qquad{}\times\Vert\mathcal{F}(F)_{1} 垂直^{q-1}\biggl(压裂{F}(F)_{2} \垂直\垂直v\垂直}{1-\Vert\mathcal{F}(F)_{1} \Vert\Vert\mathcal(垂直){F}(F)_{2} \Vert\mu'{\psi{1}}\mu{\psi.{2}}\biggr)\\&\qquad{}+\biggl(\frac{1}{\varGamma(\beta+1)}-\frac}{\varGamma四边形{}\times\Vert\mathcal{F}(F)_{2} 垂直^{q-1}\biggl(压裂{F}(F)_{1} \垂直\垂直u\垂直+\mu_{\psi_{2}}\垂直v\Vert}{1-\Vert\mathcal{F}(F)_{1} \Vert\Vert\mathcal(垂直){F}(F)_{2} \Vert\mu’_{\psi _{1}}\mu _{\psi _{2}}}\biggr)\\&&quad=\biggl(\frac{1}{\varGamma(\beta+1)}-\frac{1}{\varGamma(\beta-\delta)\varGamma(\beta)}\biggr)\biggl[\biggl(\frac{1}{\varGamma(\sigma+1)}\biggr)^{q-1}\\&&\qquad{}\times\Vert\mathcal{F}(F)_{1} 垂直^{q-1}\biggl(压裂{F}(F)_{2} \垂直\垂直v\垂直}{1-\Vert\mathcal{F}(F)_{1} \Vert\Vert\mathcal(垂直){F}(F)_{2} \Vert\mu'{\psi{1}}\mu_{\psi.{2}}\biggr)\\&\qquad{}+\biggl(\frac{1}{\varGamma(\rho+1)}\bigbr)^{q-1}\Vert\mathcal{F}(F)_{2} 垂直^{q-1}\biggl(压裂{F}(F)_{1} \垂直\垂直u\垂直+\mu'_{\psi_{2}}\垂直v\垂直}{1-\Vert\mathcal{F}(F)_{1} \Vert\Vert\mathcal(垂直){F}(F)_{2} \垂直\mu’{\psi{1}}\mu{\psi{2}}\biggr)\biggr]\\&\quad<\infty。\结束{对齐}$$

因此\(\mathcal{H^{*}}\)是一致有界运算符。

现在,我们显示操作符\(\mathcal{H^{*}}\)是连续和紧凑的。因此,我们构造了一个序列\(xi{n}=(u{n},v{n})这样的话\((u{n},v{n})\右箭头(u,v)\)作为\(n\rightarrow\infty\)因此,我们有

$$开始{aligned}和\bigl\Vert\bigl(\mathcal{H^{*}}(u_{n},v_{n{)-\mathcal{H^}(u,v)\bigr bigl(\mathcal{H^{*}}_{1},\mathcal{H^}}_2}\bigr)(u,v))\bigr\|\\&\quad\leq\bigl\Vert\bigl(u,v)\biger)\bigr\Vert+\bigl\Vert\bigl t,s)\\&\qquad{}\times\phi_{q}\biggl(\frac{1}{\varGamma(\sigma)}\int_{0}^{s}(s-\tau)^{\sigma-1}\mathcal{F}(F)_{1} (\tau)\psi_{1}\bigl(\tau,u_{n}(\tau),{}^{c} D类^{\rho}\bigl(\phi_{p} D类^{\beta}v_{n}(\tau)\bigr)\,d\tau\biggr)\,ds\\&\qquad{}-\int_{0}^{1}\mathcal{G}^{beta}(t,s)\phi_{q}\biggl{F}(F)_{1} (τ)\psi{1}\bigl(τ,u(\tau),{}^{c} D类^{\rho}\bigl(\phi_{p} D类^{\beta}v(\tau)\biger)\bigr)\,d\tau\biggr)\,ds\biggr\vert\\&\qquad{}+\sup_{t\in\mathrm{J}}\biggl\vert\int_{0}^{1}\mathcal{G}{\beta}(t,s)\\&\qquid{}\times\phi_{q}\bigl(\frac{1}{\varGamma(\rho)}\int_{0}^{s}(s-\tau)^{\rho-1}\mathcal{F}(F)_{2} (τ)\psi{2}\bigl(τ,{}^{c} D类^{\sigma}\bigl(\phi_{p} D类^{β}u_{n}(\tau)\bigr),v_{n}(\t au)\ bigr \mathcal公司{F}(F)_{2} (τ)\psi{2}\bigl(τ,{}^{c} D类^{\sigma}\bigl(\phi_{p} D类^{\beta}u(\tau)\bigr),v(\tau)\biger)\,d\tau\biggr)\,ds\biggr\vert\\&\quad\leq\int_{0}^{1}\bigl\vert\mathcal{G}^{beta}(t,s)\biger\vert\\\&\qquad{}\times\biggl\vert\phi_{q}\biggl(\frac{1}{\varGamma(\sigma)}\nint_{0}^{s}(s-\tau)^{\sigma-1}\mathcal{F}(F)_{1} (\tau)\psi_{1}\bigl(\tau,u_{n}(\tau),{}^{c} D类^{\rho}\bigl(\phi_{p} D类^{\beta}v{n}(\tau)\bigr)\,d\tau\biggr)\,ds\\&\qquad{}-\phi_{q}\biggl(\frac{1}{\varGamma(\sigma)}\int_{0}^{s}(s-\tau{F}(F)_{1} (τ)\psi{1}\bigl(τ,u(\tau),{}^{c} D类^{\rho}\bigl(\phi_{p} D类^{\beta}v(\tau)\biger)\bigr)\,d\tau\biggr}\int_{0}^{s}(s-\tau)^{\rho-1}\mathcal{F}(F)_{2} (τ)\psi{2}\bigl(τ,{}^{c} D类^{\sigma}\bigl(\phi_{p} D类^{β}u_{n}(\tau)\bigr),v_{n{(\teau)\biger)\,d\tau\biggr)\,ds\\&\qquad{}-\phi_{q}\biggl(\frac{1}{varGamma(\rho)}\int_{0}^{s}(s-\tau{F}(F)_{2} (τ)\psi{2}\bigl(τ,{}^{c} D类^{\sigma}\bigl(\phi_{p} D类^{\beta}u(\tau)\bigr),v(\tau)\biger)\,d\tau\biggr)\,ds\biggr\Vert\biggr\}\\&\quad\leq(q-1)\varrho^{2}\int_{0}^{1}\bigl\Vert\mathcal{G}(t,s)\biger\Vert\&\qquad{}\times\biggl\frac{1}\varGamma(\sigma)}\int_{0}^{s}(s-\tau)^{\sigma-1}\bigl\Vert\mathcal{F}(F)_{1} (\tau)\bigr\Vert\bigl\Vert\psi_{1}\bigr(\tau,u_{n}(\tao),{}^{c} D类^{\rho}\bigl(\phi_{p} D类^{\beta}v{n}(\tau)\biger)^{c} D类^{\rho}\bigl(\phi_{p} D类^{\beta}v(\tau)\biger)\bigr\Vert\,d\tau\bigr)\,ds\\&\qquad{}+\frac{1}{\varGamma(\rho)}\int_{0}^{s}(s-\tau)^{\rho-1}\bigl\Vert\mathcal{F}(F)_{2} (tau)\bigr\Vert\bigl\Vert\psi_{2}\bigl(\tau,{})^{c} D类^{\sigma}\bigl(\phi_{p} D类^{\beta}u_{n}(\tau)\bigr),v_{n{(\teau)\biger)\\&\qquad{}-\psi_{2}\bigl(\tao,^{{c}}D^{\sigma}\bigle(\phi_{p} D类^{\beta}u(\tau),v(\tau)\bigr)\bigr\Vert\,d\tau\bigr)\,ds\biggr\}\&&quad\leq(q-1)\varrho^{2}\int _{0}^{1}\bigl\Vert\mathcal{G}^{\beta}(t,s)\bigr\Vert\biggl\{\frac{\mathcal{米}_{\psi_{1}}\垂直\mathcal{F}(F)_{1} \垂直\垂直u_{n} -u个\Vert+\mathcal{M}'_{\psi_{1}}\mathcal{M}'{\psi.{2}}\Vert\mathcal{F}(F)_{1} \Vert\Vert\mathcal(垂直){F}(F)_{2} \垂直\垂直v_{n} -v型\垂直}{\varGamma(\sigma+1)}\\&\qquad{}+\frac{\mathcal{米}_{\psi_{1}}\mathcal{米}_{\psi_{2}}\Vert\mathcal{F}_{1}\Vert\mathcal{F}(F)_{2} \ | \垂直u_{n} -u个\Vert+\mathcal{M}'_{\psi_{2}}\|\mathcal{F}(F)_{2} \ | \垂直v_{n} -v型\Vert}{\varGamma(\rho+1)}\biggr\}\\&\quad\rightarrow 0,\quad_text{作为$n\rightarror\infty$.}\end{aligned}$$

因此,\(\|\mathcal{H^{*}}(u_{n},v_{n{)-\mathcal{H^}},(u,v)\|\rightarrow 0\)作为\(n\rightarrow\infty\).因此\(\mathcal{H^{*}}\)是连续的。

对于等连续性,取\(\upsilon_{1},\upsillon_{2}\in\mathrm{J}\)具有\(\upsilon _{1}<\upsilon _{2}\),对于任何\((u,v)\ in \ varOmega(r)\),我们有

$$开始{对齐}和\bigl\Vert\bigl(\mathcal{H^{*}}(u,v)(\upsilon_{1}{H^{*}}_{1}(u,v)(\upsilon_{2})\biger-\mathcal{H^{*}}_2}(u,v)(\upsilon_{2})\biger)\bigr\Vert\\&\quad=\sup_{t\in\mathrm{J}}\biggl\Vert\int_{0}^{1}\mathcal{G}{beta}(\upssilon_{1},s)\phi_{q}\bigl(\frac{1}{\varGamma(\sigma)}\int_{0}^{s}(s-\tau)^{sigma-1}\mathcal{F}(F)_{1} (τ)\psi{1}\bigl(τ,u(\tau),{}^{c} D类^{\rho}\bigl(\phi_{p} D类^{\beta}v(\tau)\bigr)\,d\tau\biggr)\,ds\\&\qquad{}-\int_{0}^{1}\mathcal{G}^{\beta}(\upsilon_{2},s)\phi_{q}\biggl(\frac{1}{\varGamma(\sigma{F}(F)_{1} (τ)\psi{1}\bigl(τ,u(\tau),{}^{c} D类^{\rho}\bigl(\phi_{p} D类^{\beta}v(\tau)\bigr)\,d\tau\biggr)\,ds\biggr\vert\\&\qquad{}+\sup_{t\in\mathrm{J}}\biggl\vert\int _{0}^{1}\mathcal{G}^{\beta}(\tau_{1},s)\\&\qquad{}\times\phi{q}\biggl(\frac{1}{\varGamma(\rho)}\int _{0}^{s}(s-\tau)^{\rho-1}\数学{F}(F)_{2} (τ)\psi{1}\bigl(τ,{}^{c} D类^{\sigma}\bigl(\phi_{p} D类^{\beta}u(\tau),v(\tao)\bigr)\,d\tau\biggr)\,ds\\&\qquad{}-\int_{0}^{1}\mathcal{G}^{beta}(\upsilon_{2},s)\phi_{q}\biggl马查尔{F}(F)_{2} (τ)\psi{1}\bigl(τ,{}^{c} D类^{\sigma}\bigl(\phi_{p} D类^{β}u(\tau),v(\teau)\bigr)\biger)\,d\tau\biggr gl(\frac{1}{\varGamma(\sigma)}\int_{0}^{s}(s-\tau)^{\sigma-1}\vert\mathcal{F}(F)_{1} \Vert\bigl\Vert\psi_{1}\bigl(\tau,u(\tao),{}^{c} D类^{\rho}\bigl(\phi_{p} D类^{\beta}v(\tau)\biger)\bigr\Vert\,d\tau\biggr)\,ds\\&\qquad{}+\int_{0}^{1}\bigl\Vert\mathcal{G}^{beta}c{1}{\varGamma(\rho)}\int_{0}^{s}(s-\tau)^{\rho-1}\Vert\mathcal{F}(F)_{2} \Vert\bigl\Vert\psi_{1}\bigl(\tau,{}^{c} D类^{\sigma}\bigl(\phi_{p} D类^{β}u(\tau),v(\tao)\biger)\biger\Vert\,d\tau\biggr)\,ds\\&\quad\leq\biggl(\frac{\Vert\upsilon_{1}^{\beta}-\upsilon_{2}^{\ beta}\Vert}{\varGamma(\beta+1)}+\frac}\Vert\opsilon_ \beta-1}\Vert}{\varGamma(\beta-\delta)\varGamma(\beta+1)}\biggr)\biggl[\frac{1}{\varGamma(\sigma+1)}\biggr]^{q-1}\&&\qquad{}\times\Vert\mathcal{F}(F)_{1} 垂直^{q-1}\biggl(压裂{F}(F)_{2} \垂直\垂直v\垂直}{1-\Vert\mathcal{F}(F)_{1} \Vert\Vert\mathcal(垂直){F}(F)_{2} 垂直\mu'{\psi{1}}\mu{\psi.{2}}\biggr){\varGamma(\beta-\delta)\varGarma(\beta+1)}\biggr)\biggl[\frac{1}{\var伽玛(\rho+1)}\ biggr]^{q-1}\\&\qquad{}\times\Vert\mathcal{F}(F)_{2} 垂直^{q-1}\biggl{F}(F)_{1} \Vert\Vert\mathcal(垂直){F}(F)_{2} \Vert\mu'{\psi_{1}}\mu_{\psi.{2}}\biggr)。\结束{对齐}$$

这意味着\(\|\mathcal{H^{*}}(u,v)(\upsilon_{1})-\mathcal{H^}}作为\(\upsilon_{1}\rightarrow\upsillon_{2}\).因此\(\mathcal{H^{*}}\)相对紧凑。根据Arzelä–Ascolli定理,\(\mathcal{H^{*}}\)是紧凑的,因此是完全连续的算子。

现在让我们定义一个集合

$$\mathrm{W}=\bigl\{(u,v$$

我们将证明W是有界的。相反,假设W是无界的。\((u,v)\in\mathrm{W}\)这样的话\(\|(u,v)\|=\mathcal{K}\rightarrow\infty\).但是

$$\begin{aligned}\bigl\Vert(u,v)\bigr\Vert=&\bigl\ Vert\lambda\mathcal{H}(u,v)\biger\Vert\\\leq&\bigle\Vert\mathcal}(u,v)\ bigr\Vert\\\leq&\biggl(\frac{1}{\varGamma(\beta+1)}-\frac}{1}{\varGamma(beta-\delta)\varGamma(\beta)}\big gr)\\&{}\times\biggl[\biggl(\frac{1}{\varGamma(\sigma+1)}\biggr)^{q-1}\Vert\mathcal{F}(F)_{1} 垂直^{q-1}\biggl(压裂{F}(F)_{2} \垂直\垂直v\垂直}{1-\Vert\mathcal{F}(F)_{1} \Vert\Vert\mathcal(垂直){F}(F)_{2} \Vert\mu'{\psi{1}}\mu_{\psi.{2}}\biggr)\\&{}+\biggl(\frac{1}{\varGamma(\rho+1)}\bigbr)^{q-1}\Vert\mathcal{F}(F)_{2} 垂直^{q-1}\biggl(压裂{F}(F)_{1} \垂直\垂直u\垂直+\mu'_{\psi_{2}}\垂直v\垂直}{1-\Vert\mathcal{F}(F)_{1} \Vert\Vert\mathcal(垂直){F}(F)_{2} \Vert\mu'_{\psi_{1}}\mu_{\psi _{2}}}\biggr)\biggr]。\结束{对齐}$$

这意味着

$$开始{aligned}\bigl\Vert(u,v)\bigr\Vert\leq&\biggl(\frac{1}{\varGamma(\beta+1)}-\frac}{\varGamma{F}(F)_{1} 垂直^{q-1}\biggl(压裂{F}(F)_{2} \垂直\垂直v\垂直}{1-\Vert\mathcal{F}(F)_{1} \Vert\Vert\mathcal(垂直){F}(F)_{2} \Vert\mu'{\psi{1}}\mu_{\psi.{2}}\biggr)\\&{}+\biggl(\frac{1}{\varGamma(\rho+1)}\bigbr)^{q-1}\Vert\mathcal{F}(F)_{2} 垂直^{q-1}\biggl(压裂{F}(F)_{1} \垂直\垂直u\垂直+\mu'_{\psi_{2}}\垂直v\垂直}{1-\Vert\mathcal{F}(F)_{1} \Vert\Vert\mathcal(垂直){F}(F)_{2} \Vert\mu’_{\psi_{1}}\mu _{\psi_{2}}}\biggr)\biggr],\end{aligned}$$

同等地

$$开始{对齐}1\leq&\frac{1}{\Vert(u,v)\Vert}\biggl(\frac{1'{\varGamma(\beta+1)}-\frac{1}}{\varGamma(\ beta-\delta)\varGamma(\beta盐酸{F}(F)_{1} 垂直^{q-1}\biggl(压裂{F}(F)_{2} \垂直\垂直v\垂直}{1-\Vert\mathcal{F}(F)_{1} \Vert\Vert\mathcal(垂直){F}(F)_{2} \Vert\mu'{\psi{1}}\mu_{\psi.{2}}\biggr)\\&{}+\biggl(\frac{1}{\varGamma(\rho+1)}\bigbr)^{q-1}\Vert\mathcal{F}(F)_{2} 垂直^{q-1}\biggl(压裂{F}(F)_{1} \垂直\垂直u\垂直+\mu'_{\psi_{2}}\垂直v\垂直}{1-\Vert\mathcal{F}(F)_{1} \Vert\Vert\mathcal(垂直){F}(F)_{2} \Vert\mu'{\psi{1}}\mu_{\psi.{2}}\biggr)\biggr]\\=&\frac{1}{\mathcal{K}}\biggl{\varGamma(\sigma+1)}\biggr)^{q-1}\Vert\mathcal{F}(F)_{1} 垂直^{q-1}\biggl(压裂{F}(F)_{2} \垂直\垂直v\垂直}{1-\Vert\mathcal{F}(F)_{1} \Vert\Vert\mathcal(垂直){F}(F)_{2} \Vert\mu'{\psi{1}}\mu_{\psi.{2}}\biggr)\\&{}+\biggl(\frac{1}{\varGamma(\rho+1)}\bigbr)^{q-1}\Vert\mathcal{F}(F)_{2} 垂直^{q-1}\biggl(压裂{F}(F)_{1} \垂直\垂直u\垂直+\mu'_{\psi_{2}}\垂直v\垂直}{1-\Vert\mathcal{F}(F)_{1} \Vert\Vert\mathcal(垂直){F}(F)_{2} \Vert\mu'_{\psi_{1}}\mu_{\psi _{2}}\biggr)\biggr]\\rightarrow&0\quad\text{as}\mathcal{K}\rightarror\infty。\结束{对齐}$$

这是一个矛盾。最终W是有界的,因此由引理2.7操作员\(\mathcal{H}\)中至少有一个固定点\(\varOmega(r_{2})/\varOmega(r_1})\),这是耦合系统的解决方案(1.1).

因此,通过引理2.9, (1.1)至少有一种解决方案。□

控制非线性函数的增长界\(磅/平方英寸{1}),\(psi{2})然后继续下一个结果,我们需要以下高度函数。

$$\begin{aligned}\textstyle\begin{cases}\Im _{\max _{t\in\mathrm{J},x>0}}}(t,x)=\ max\{\{\psi _{1},\ psi _{2}\}:t^{\beta-1}x\ leq(u,v)\ leq x\},\\\Im _{\mamin _{t\in\mathrm{J},x>0}}}(t,x)=\ min\{\{\psi _{1},\ psi _{2}\}:t^{\beta-1}x\leq(u,v)\leq x\}。\结束{cases}\displaystyle\end{aligned}$$
(3.13)

定理3.4

假设 \((\mathbf{高}_{1})\) \((\mathbf{高}_{3})\) 持有,并且存在 \(r^{*},\hbar\in \mathcal{r}^{+}\) 满足以下条件之一以下为:

\((\我{1})\)以下为:
$$\hbar\leq\int_{0}^{1}\mathcal{G}^{beta}(1,s)\phi_{q}\biggl(\frac{1}{varGamma(\sigma)}\int_}0}^}s}(s-\tau)^{sigma-1}\mathcal{F}(F)_{1} (τ)\Im_{\min}\bigl(τ,\hbar,{}^{c} D类^{\rho}\bigl(\phi_{p} D类^{\beta}v(\tau)\bigr)\,d\tau\biggr)\,ds<\infty^{+}$$

$$\int_{0}^{1}\mathcal{G}^{beta}(1,s)\phi_{q}\biggl{F}(F)_{1} (\tau)\Im _{\max}\bigl(\tau,r^{*},{}^{c} D类^{\rho}\bigl(\phi_{p} D类^{\beta}v(\tau)\bigr)\,d\tau\biggr)\,ds\leqr^{*}$$
\((Im _{2})\)以下为:
$$\int_{0}^{1}\mathcal{G}^{beta}(1,s)\phi_{q}\biggl{F}(F)_{1} (τ)\Im_{max}\bigl(τ,hbar,{}^{c} D类^{\rho}\bigl(\phi_{p} D类^{\beta}v(\tau)\bigr)\,d\tau\biggr)\,ds<\hbar$$

$$r^{*}\leq\int _{0}^{1}\mathcal{G}^{\beta}(1,s)\phi _{q}\biggl(\frac{1}{\varGamma(\sigma)}\int _{0}^{s}(s-\tau)^{\sigma-1}\mathcal{F}(F)_{1} (τ)\Im_{\min}\bigl(τ,r^{*},{}^{c} D类^{\rho}\bigl(\phi_{p} D类^{\beta}v(\tau)\bigr)\,d\tau\biggr)\,ds<\infty^{+}$$
\((\我{3})\)以下为:
$$\hbar\leq\int_{0}^{1}\mathcal{G}^{beta}(1,s)\phi_{q}\biggl(\frac{1}{varGamma(\sigma)}\int_}0}^}s}(s-\tau)^{sigma-1}\mathcal{F}(F)_{2} (τ)\Im_{min}\bigl(τ,{}^{c} D类^{\rho}\bigl(\phi_{p} D类^{\beta}u(\tau),\hbar\bigr)\bigr)\,d\tau\biggr)\,ds<\infty^{+}$$

$$\int_{0}^{1}\mathcal{G}^{beta}(1,s)\phi_{q}\biggl{F}(F)_{2} (τ)\Im_{max}\bigl(τ,{}^{c} D类^{\rho}\bigl(\phi_{p} D类^{\beta}u(\tau)\bigr),r^{*}\biger)\,d\tau\biggr)\,ds\leqr^{*}$$
\((\Im_{4})\)以下为:
$$\int_{0}^{1}\mathcal{G}^{beta}(1,s)\phi_{q}\biggl{F}(F)_{2} (τ)\Im_{max}\bigl(τ,{}^{c} D类^{\rho}\bigl(\phi_{p} D类^{\beta}u(\tau)\bigr),\hbar\biger)\,d\tau\biggr)\,ds<\hbar$$

$$r^{*}\leq\int _{0}^{1}\mathcal{G}^{\beta}(1,s)\phi _{q}\biggl(\frac{1}{\varGamma(\sigma)}\int _{0}^{s}(s-\tau)^{\sigma-1}\mathcal{F}(F)_{2} (τ)\Im_{min}\bigl(τ,{}^{c} D类^{\rho}\bigl(\phi_{p} D类^{\beta}u(\tau)\bigr),r^{*}\biger)\,d\tau\biggr)\,ds<\infty^{+}$$

然后是问题(1.1)具有非负解 \((u^{*},v^{*{)在\mathcal中{乙}_{r} \times\mathcal时间{乙}_{r} \),以便 \(\hbar\leq\|(u^{},v^{*})\|\leqr^{*{})

证明

在不失一般性的情况下,我们只采取\((\我{1})\)\((Im _{2})\).如果\((u,v)\ in \ partial \ varOmega(\hbar)\),然后\(\|(u,v)\|=\hbar\)\(t^{\beta-1}\hbar\leq(u,v)\leq\hbar\),\(在数学中{J}).签署人(3.13)我们有

$$\begin{aligned}&&bigl\Vert\mathcal{H}^{*}(u,v)(t)\bigr\Vert\\&&quad=\bigl\Vert\bigl(\mathcal{H}^{*}_{1},\mathcal{H}^{*}_{2}\bigr)(u,v)(t)\bigr\Vert\\&&quad=\sup_{t\in\mathrm{J}}\int _{0}^{1}\mathcal{G}^{\beta}(t,s)\phil{q}\biggl(\frac{1}{\varGamma(\sigma)}\int_{0}^{s}(s-\tau)^{\sigma-1}\mathcal{F}(F)_{1} (τ)\psi{1}\bigl(τ,u(\tau),{}^{c} D类^{\rho}\bigl(\phi_{p} D类^{\beta}v(\tau)\bigr)\,d\tau\biggr)\,ds\\&\qquad{}+\sup_{t\in\mathrm{J}}\int_{0}^{1}\mathcal{G}^{beta}(t,s)\phi_{q}\biggl(\frac{1}{\varGamma(\rho)}\int_0}^{s}(s-\tau)^{\rho-1}\mathcal公司{F}(F)_{2} (τ)\psi{2}\bigl(τ,{}^{c} D类^{\sigma}\bigl(\phi_{p} D类^{\beta}u(\tau)\bigr),v(\tao)\bigr)\,d\tau\biggr)\,ds\\&\quad\geq t^{\beta-1}\int_{0}^{1}\mathcal{G}^{beta}(1,s)\phi_{q}\biggl盐酸{F}(F)_{1} (τ)\psi{1}\bigl(τ,u(\tau),{}^{c} D类^{\rho}\bigl(\phi_{p} D类^{\beta}v(\tau)\biger)\bigr)\,d\tau\biggr)\,ds\\&\qquad{}+t^{\beta-1}\int_{0}^{1}\mathcal{G}^{beta}(1,s)\\&\q quad{{}\ times\phi_{q}\biggl(\frac{1}{\varGamma(\rho)}\int_{0}^{s}(s-\tau)^{\rho-1}\马塔尔{F}(F)_{2} (τ)\psi{2}\bigl(τ,{}^{c} D类^{\sigma}\bigl(\phi_{p} D类^{\beta}u(\tau)\bigr),v(\tau)\biger)\,d\tau\biggr)\,ds\\&\quad\geq\int_{0}^{1}\mathcal{G}^{beta}(1,s)\phi_{q}\biggl(\frac{1}{\varGamma(\sigma)}\int_0}^s}(s-\tau{F}(F)_{1} (τ)\Im_{min_{t\in\mathrm{J}}}\bigl(τ,hbar,{}^{c} D类^{\rho}\bigl(\phi_{p} D类^{\beta}v(\tau)\bigr)\bigr]\,d\tau\biggr)\,ds\\&\qquad{}+\int_{0}^{1}\mathcal{G}^{\beta}(1,s)\phi_{q}\biggl(\frac{1}{\varGamma(\rho)}\int_}^{s}(s-\tau)^{\rho-1}\bigl[\mathcal{F}(F)_{2} (τ)\Im_{min_{t\in\mathrm{J}}}\bigl(τ,{}^{c} D类^{\sigma}\bigl(\phi_{p} D类^{\beta}u(\tau)\bigr),\hbar\biger)\biger]\,d\tau\biggr)\,ds\\&\quad\geq\frac{\hbar}{2}+\frac}\hbar{2}=\hbar=\bigl\Vert(u,v)\bighr\Vert。\结束{对齐}$$

因此

$$\bigl\Vert\mathcal{H}^{*}(u,v)(t)\bigr\Vert\geq\hbar=\bigl\ Vert(u,v)\biger\Vert$$

什么时候?\((u,v)\ in \ partial \ varOmega(r^{*})\),然后\(\ |(u,v)\ |=r^{*}\),和依据(3.13),\(t^{\beta-1}r^{*}\leq(u,v)\leqr^{**}\),我们有\(\Im_{max_{t\in\mathrm{J}}}\geq\{psi{1},\psi{2}),因此

$$开始{对齐}和\bigl\Vert\mathcal{H}^{*}(u,v)数学{G}^{beta}(t,s)\phi_{q}\biggl(\frac{1}{\varGamma(\sigma)}\int_{0}^{s}(s-\tau)^{\sigma-1}\mathcal{F}(F)_{1} (τ)\psi{1}\bigl(τ,u(\tau),{}^{c} D类^{\rho}\bigl(\phi_{p} D类^{\beta}v(\tau)\bigr)\,d\tau \biggr)\,ds\\&&\qquad{}+\max_{t\in\mathrm{J}}\int _{0}^{1}\mathcal{G}^{\beta}(t,s)\\&&\qquad{}\times\phi{q}\biggl(\frac{1}{\varGamma(\rho)}\int _{0}^{s}(s-\tau)^{\rho-1}\mathcal{F}(F)_{2} (τ)\psi{2}\bigl(τ,{}^{c} D类^{\sigma}\bigl(\phi_{p} D类^{\beta}u(\tau)\bigr),v(\tao)\bigr)\,d\tau\biggr)\,ds\\&\quad\leq t^{\beta-1}\int_{0}^{1}\mathcal{G}^{beta}(1,s)\phi_{q}\biggl盐酸{F}(F)_{1} (τ)\psi{1}\bigl(τ,u(\tau),{}^{c} D类^{\rho}\bigl(\phi_{p} D类^{\beta}v(\tau)\biger)\bigr)\,d\tau\biggr)\,ds\\&\qquad{}+t^{\beta-1}\int_{0}^{1}\mathcal{G}^{beta}(1,s)\\&\q quad{{}\ times\phi_{q}\biggl(\frac{1}{\varGamma(\rho)}\int_{0}^{s}(s-\tau)^{\rho-1}\马塔尔{F}(F)_{2} (τ)\psi{2}\bigl(τ,{}^{c} D类^{\sigma}\bigl(\phi_{p} D类^{\beta}u(\tau)\bigr),v(\tau)\biger)\,d\tau\biggr)\,ds\\&\quad\leq\int_{0}^{1}\mathcal{G}^{beta}(1,s)\phi_{q}\biggl(\frac{1}{\varGamma(\sigma)}\int_0}^s}(s-\tau{F}(F)_{1} (τ)\Im_{max_{t\in\mathrm{J}}}\bigl(τ,r^{*},{}^{c} D类^{\rho}\bigl(\phi_{p} D类^{\beta}v(\tau)\biger)\bigr]\,d\tau\biggr)\,ds\\&\qquad{}+\int_{0}^{1}\mathcal{G}^{\beta}(1,s)\\&\quad{{}\times\phi_{q}\biggl(\frac{1}{\varGamma(\rho)}\int_}^{s}(s-\tau)^{\rho-1}\bigl[\mathcal公司{F}(F)_{2} (τ)\Im_{max_{t\in\mathrm{J}}}\bigl(τ,{}^{c} D类^{\sigma}\bigl(\phi_{p} D类^{\beta}u(\tau)\bigr),r^{*}\biger)\biger]\,d\tau\biggr。\结束{对齐}$$

因此

$$\bigl\Vert\mathcal{H}^{*}(u,v)(t)\bigr\Vert\geq\hbar=\bigl\ Vert(u,v)\biger\Vert$$

结合这些不平等,我们说\({\mathcal{H}^{*}}\)间隔中有一个固定点\([\hbar,r^{*}]\),说吧\((u^{*},v^{*{)在\上划线{\varOmega(r^{*neneneep)}/\varOmega(\hbar)\中,因此\(\hbar\leq\|(u^{},v^{*})\|\leqr^{*{})。接下来我们将展示\((u^{*},v^{*{)\)是的非负解\(在数学中{J})作为

$$\开始{aligned}u^{*}(t)=&\int_{0}^{1}\mathcal{G}^{beta}(t,s)\phi_{q}\biggl(\frac{1}{\varGamma(\sigma)}\int_}0}^s}(s-\tau)^{\sigma-1}\mathcal{F}(F)_{1} (\tau)\psi_{1}\bigl(\tau,u^{*}(\tau),{}^{c} D类^{\rho}\bigl(\phi_{p} D类^{\beta}v^{*}(\tau)\bigr)\,d\tau\biggr)\,ds\\geq&t^{\beta-1}\max_{t\in\mathrm{J}}\int_{0}^{1}\mathcal{G}(1,s)\\&{}\ times\phi_{q}\biggl(\frac{1}{\varGamma(\sigma)}\int_{0}s}(s-\tau)^{\sigma-1}\mathcal{F}(F)_{1} (tau)\psi{1}\bigl(\tau,u^{*}(\tao),{}^{c} D类^{\rho}\bigl(\phi_{p} D类^{\beta}v^{*}(\tau)\bigr)\,d\tau\biggr)\,ds\end{aligned}$$

暗示

$$u^{*}(t)\geq t^{\beta-1}\bigl\Vert u^{*.}\bigr\Vert\geq\frac{\hbar}{2}t^{\beta-1-}>0$$

类似地,我们得到

$$v^{*}(t)\geq t^{\beta-1}\bigl\Vert v^{*}\bigr\Vert\geq\frac{\hbar}{2}t^{\beta-1}>0$$

借助引理3.2\((\mathcal){P}(P)_{3})\),解决方案\((u^{*},v^{*{)\)不会减少\(在数学中{J}). □

定理3.5

让假设 \((\mathbf{高}_{1})\) \((\mathbf{高}_{3})\) 对…说实话 \(\Delta=\max\{\Delta_{1},\Delta_2}\}<1\),哪里

$$\开始{aligned}&\Delta_{1}=\frac{(q-1)\varrho^{q-1}(2\beta-\Delta)\mathcal{米}_{\psi_{1}}\垂直\mathcal{F}(F)_{1} \Vert}{(\beta-\delta)\varGamma(\beta+1)}\biggl[\frac{1}{\varGarma(\sigma+1)}+\frac}\mathcal{米}_{\psi_{2}}\垂直\mathcal{F}(F)_{2} \Vert}{\varGamma(\rho+1)}\biggr],\\&\Delta{2}=\frac{(q-1)\varrho^{q-1}(2\beta-\Delta)\mathcal{M'}{\psi{2}}\Vert\mathcal{F}(F)_{2} \Vert}{(\beta-\delta)\varGamma(\beta+1)}\biggl[\frac{\Vert\mathcal{F}(F)_{1} \Vert\mathcal{M'}_{\psi{1}}}{\varGamma(\sigma+1)}+\frac{1}{\valGamma[\rho+1)}\biggr]。\结束{对齐}$$

然后(1.1)有独特的解决方案

证明

定义运算符\(\varPhi=(\varPhi_{1},\varPhi_{2}):\overline{\varOmega(r)}/\varOmega(r)\rightarrow{\mathbf{B}}\)通过

$$\varPhi(u,v)(t)=\bigl(\varPhi _{1}(u,v),\varPhi _{2}(u,v)\bigr)(t),\quad t\in\mathrm{J}$$

哪里

$$开始{对齐}[b]&\varPhi_{1}(u,v)(t)\\&\quad=\int_{0}^{1}\mathcal{G}^{\beta}(t,s)\phi_{q}\biggl(\frac{1}{\varGamma(\sigma)}\int_}^{s}(s-\tau)^{\sigma-1}\mathcal{F}(F)_{1} (τ)\psi{1}\bigl(τ,u(\tau),{}^{c} D类^{\rho}\bigl(\phi_{p} D类^{\beta}v(\tau)\bigr)\,d\tau\biggr)\,ds\end{对齐}$$

$$开始{对齐}[b]&\varPhi_{2}(u,v)(t)\\&\quad=\int_{0}^{1}\mathcal{G}^{\beta}(t,s)\phi_{q}\biggl(\frac{1}{\varGamma(\sigma)}\int_}^{s}(s-\tau)^{\sigma-1}\mathcal{F}(F)_{1} (τ)\psi{1}\bigl(τ,u(\tau),{}^{c} D类^{\rho}\bigl(\phi_{p} D类^{\beta}v(\tau)\bigr)\,d\tau\biggr)\,ds.\end{aligned}$$

现在,对于任何人\((u,v),(\bar{u},\bar{v},我们有

$$\开始{aligned}&\bigl\Vert\varPhi(u,v)-\varPhi(\frac{1}{\varGamma(\sigma)}\int_{0}^{s}(s-\tau)^{\sigma-1}\mathcal{F}(F)_{1} (τ)\psi{1}\bigl(τ,u(\tau),{}^{c} D类^{\rho}\bigl(\phi_{p} D类^{\beta}v(\tau)\biger)\bigr)\,d\tau\biggr)\,ds\\&\qquad{}-\phi_{q}\biggl(\frac{1}{\varGamma(\sigma)}\int_{0}^{s}(s-\tau)^{\sigma-1}\mathcal{F}(F)_{1} (tau)\psi{1}\bigl(\tau,\bar{u}(\tao),{}^{c} D类^{\rho}\bigl(\phi_{p} D类^{\beta}\bar{v}(\tau)\bigr)\,d\tau\biggr gl(\frac{1}{\varGamma(\rho)}\int_{0}^{s}(s-\tau)^{\rho-1}\mathcal{F}(F)_{2} (τ)\psi{2}\bigl(τ,{}^{c} D类^{\sigma}\bigl(\phi_{p} D类^{β}u(\tau)\bigr),v(\teau)\biger)\,d\tau\biggr)\,ds\\&\qquad{}-\phi_{q}\biggl(\frac{1}{\varGamma(\rho)}\int_{0}^{s}(s-\tau)^{\rho-1}\mathcal{F}(F)_{2} (τ)\psi{2}\bigl(τ,{}^{c} D类^{\sigma}\bigl(\phi_{p} D类^{\beta}\bar{u}(\tau)\bigr),\bar{v}(\tau)\biger)\,d\tau\biggr)\,ds\biggl|\biggr\}\\&\quad\leq\frac{(q-1)\varrho^{q-1}(2\beta-\delta)}{(\beta-\ delta)\varGamma(\beta+1)}\biggl[\frac}\mathcal{米}_{\psi_{1}}\垂直\mathcal{F}(F)_{1} \垂直\垂直u-\bar{u}\垂直+\mathcal{M}'{\psi_{1}}\mathcal{M}'{\psi.{2}}\Vert\mathcal{F}(F)_{1} \Vert\Vert\mathcal(垂直){F}(F)_{2} \Vert\Vert v-\bar{v}\Vert}{\varGamma(\sigma+1)}\\&\qquad{}+\frac{\mathcal{米}_{\psi_{1}}\mathcal{米}_{\psi_{2}}\Vert\mathcal{F}_{1}\Vert\mathcal{F}(F)_{2} 垂直u-\bar{u}\Vert+\mathcal{M}'{\psi_{2}}\|\mathcal{F}(F)_{2} 垂直v-\bar{v}\Vert}{\varGamma(\rho+1)}\biggr]\\&\quad\leq\frac{(q-1)\varrho^{q-1}(2\beta-\delta)\mathcal{米}_{\psi_{1}}\垂直\mathcal{F}(F)_{1} \Vert}{(\beta-\delta)\varGamma(\beta+1)}\biggl[\frac{1}{\varGarma(\sigma+1)}+\frac}\mathcal{米}_{\psi_{2}}\|\Vert\mathcal(垂直){F}(F)_{2} \Vert}{\varGamma(\rho+1)}\biggr]\Vert u-\bar{u}\Vert\\&\qquad{}+\frac{(q-1)\varrho^{q-1}(2\beta-\delta)\mathcal{M'}_{\psi_{2}}\Vert\mathcal{F}(F)_{2} \Vert}{(\beta-\delta)\varGamma(\beta+1)}\biggl[\frac{\Vert\mathcal{F}(F)_{1} \Vert\mathcal{M'}_{\psi_{1}}}{\varGamma(\sigma+1)}+\frac{1}{\valGamma)-(v,\bar{v})\bigr\Vert。\结束{对齐}$$

因此

$$\bigl\Vert\varPhi(u,v)-\varPhi$$

因此,假设\(增量<1)意味着操作员Φ是一种收缩。因此,根据定理2.9, (1.1)具有唯一的固定点。□

4稳定性分析

在本节中,我们分析了提议问题的Hyers–Ulam稳定性。

定理4.1

假设 \((\mathbf{高}_{1})\)\((\mathbf{高}_{3})\) 具有 \(增量<1) 持有,以及光谱半径 \(\mathcal{Q}\) 小于一然后是(1.1)海尔斯-乌拉姆稳定吗

证明

\((u,v)\)准确无误\((\bar{u},\bar{v})是所考虑问题的近似解(1.1),那么根据定理3.5我们有

$$\开始{aligned}&\bigl\Vert\varPhi(u,v)(t)-\varPhi{2}(\bar{u},\bar{v})(t)\biger)\bigr\Vert\\&\quad\leq\bigl\Vert\varPhi_{1}(u,v)(t\bigr\Vert+\bigl\Vert\varPhi _{2}(u,v)(t)-\varPhi _{2}(\bar{u},\bar{v})\bigr\Vert\\&&quad=\sup_{t\in\mathrm{J}}}\bigl\Vert\varPhi _{1}(u,v)(t)-\varPhi _{1}(\bar{u},\bar{v})(t)\bigr\Vert+\sup_{t\in\mathrm{J}}}\bigl\Vert varPhi _{2}(u,v)(t)-\varPhi _{2}(\bar{u},\bar{v})(t)\bigr\Vert\\\quad=\sup_{t\in\mathrm{J}}\biggl\vert\int_{0}^{1}\mathcal{G}^{beta}(t,s)\phi_{q}\biggl(\frac{1}{varGamma(\sigma)}\int_{0}^{s}(s-\tau)^{sigma-1}\mathcal{F}(F)_{1} (τ)\psi{1}\bigl(τ,u(\tau),{}^{c} D类^{\rho}\bigl(\phi_{p} D类^{\beta}v(\tau)\bigr)\,d\tau\biggr)\,ds\\&\qquad{}-\int_{0}^{1}\mathcal{G}^{\beta}(t,s)\phi_{q}\biggl{F}(F)_{1} (tau)\psi{1}\bigl(\tau,\bar{u}(\tao),{}^{c} D类^{\rho}\bigl(\phi_{p} D类^{\beta}\bar{v}(\tau)\bigr)\,d\tau\biggr int_{0}^{s}(s-\tau)^{\rho-1}\mathcal{F}(F)_{2} (τ)\psi{2}\bigl(τ,{}^{c} D类^{\sigma}\bigl(\phi_{p} D类^{β}u(\tau)\bigr),v(\teau)\biger)\,d\tau\biggr)\,ds\\&\qquad{}-\int_{0}^{1}\mathcal{G}^{beta}(t,s)\phi_{q}\biggl{F}(F)_{2} (τ)\psi{2}\bigl(τ,{}^{c} D类^{\sigma}\bigl(\phi_{p} D类^{\beta}\bar{u}(\tau)\biger),\bar{v}(\t au)\ biger)\,d\tau\biggr)\,ds\bigg|\\&\quad\leq(q-1)\varrho^{q-2}\int_{0}^{1}\bigl\vert\mathcal{G}^{\beta}(t,s)\bigr\vert\biggl\{\biggl(\frac{1}{\varGamma(\sigma)}\int _{0}^{s}(s-\tau)^{\sigma-1}\vert\mathcal{F}(F)_{1} \Vert\bigl\Vert\psi_{1}\bigl(\tau,u(\tao),{}^{c} D类^{\rho}\bigl(\phi_{p} D类^{\beta}v(\tau)\bigr)\&\qquad{}-\psi_{1}\bigl(\tau,\bar{u}(\tao),{}^{c} D类^{\rho}\bigl(\phi_{p} D类^{\beta}\bar{v}(\tau)\bigr)\biger\Vert\,d\tau\biggr)\,ds\\&\qquad{}+\frac{1}{\varGamma(\rho)}\int_{0}^{s}(s-\tau{F}(F)_{2} \Vert\bigl\Vert\psi_{2}\bigl(\tau,{}^{c} D类^{\sigma}\bigl(\phi_{p} D类^{β}u(τ),v(τ^{c} D类^{\sigma}\bigl(\phi_{p} D类^{\beta}\bar{u}(\tau),\bar{v}(\t au)\bigr)\bigr\Vert\,d\tau\,ds\biggr\}\\&\quad\leq\frac{(q-1)\varrho^{q-1}(2\beta-\delta)}{(\beta-\ delta)\varGamma(\beta+1)}\biggl[\frac}\mathcal{米}_{\psi_{1}}\垂直\mathcal{F}(F)_{1} \垂直\垂直u-\bar{u}\垂直+\mathcal{M}'{\psi_{1}}\mathcal{M}'{\psi.{2}}\Vert\mathcal{F}(F)_{1} \Vert\Vert\mathcal(垂直){F}(F)_{2} \Vert\Vert v-\bar{v}\Vert}{\varGamma(\sigma+1)}\\&\qquad{}+\frac{\mathcal{米}_{\psi_{1}}\mathcal{米}_{\psi_{2}}\Vert\mathcal{F}_{1}\Vert\mathcal{F}(F)_{2} 垂直u-\bar{u}\Vert+\mathcal{M}'{\psi_{2}}\|\mathcal{F}(F)_{2} 垂直v-\bar{v}\Vert}{\varGamma(\rho+1)}\biggr]\\&\quad\leq\frac{(q-1)\varrho^{q-1}(2\beta-\delta)\mathcal{米}_{\psi_{1}}\垂直\mathcal{F}(F)_{1} \Vert}{(\beta-\delta)\varGamma(\beta+1)\varGamma(\sigma+1)}\Vert u-\bar{u}\Vert\\&\qquad{}+\frac{(q-1)\varrho^{q-1}{F}(F)_{1} \Vert\Vert\mathcal(垂直){F}(F)_{2} \Vert}{(\beta-\delta)\varGamma(\beta+1)\varGamma(\sigma+1)}\Vertv-\bar{v}\Vert\\&\qquad{}+\frac{(q-1)\varrho^{q-1}(2\beta-\ delta)\ mathcal{米}_{\psi_{1}}\mathcal公司{米}_{\psi_{2}}\垂直\mathcal{F}(F)_{1} \Vert\Vert\mathcal(垂直){F}(F)_{2} \Vert}{(β-\delta)\varGamma(β+1)\varGamma(西格玛+1)}\Vert u-\bar{u}\Vert\\&&\qquad{}+\frac{(q-1)\varrho^{q-1}(2\β-\delta)\mathcal{M'}_{\psi _{1}}\Vert\mathcal{F}(F)_{1} \Vert}{(\beta-\delta)\varGamma(\beta+1)\varGamma(\sigma+1)}\Vertv-\bar{v}\Vert\\&\quad\leq\bigl\Vert(u,v)-(\bar{u},\bar{v})\bigr\Vert\mathcal{Q},\ end{aligned}$$

哪里= ( C类 1 C类 2 C类 C类 4 ) .由于光谱半径\(\mathcal{Q}\)小于1,因此所考虑系统的解(1.1)Hyers–Ulam稳定。在这里

$$\开始{aligned}&\mathcal{C}_{1} =\压裂{(q-1)\varrho^{q-1}(2\beta-\delta)\mathcal{M}_{psi{1}}\Vert\mathcal{F}(F)_{1} \Vert}{(\beta-\delta)\varGamma(\beta+1)\varGamma(\sigma+1)},\\&\mathcal{C}_{2} =\frac{(q-1)\varrho^{q-1}(2\beta-\delta)\mathcal{M'}{\psi{1}}\mathcal{M'{\psi.{2}}\Vert\mathcal{F}(F)_{1} \Vert\Vert\mathcal(垂直){F}(F)_{2} \Vert}{(\beta-\delta)\varGamma(\beta+1)\varGamma(\sigma+1)},\\&\mathcal{C}_{3} =\压裂{(q-1)\varrho^{q-1}(2\β-\δ)\mathcal{米}_{\psi_{1}}\mathcal{米}_{\psi_{2}}\垂直\mathcal{F}(F)_{1} \Vert\Vert\mathcal(垂直){F}(F)_{2} \Vert}{(\beta-\delta)\varGamma(\beta+1)\varGamma(\sigma+1)},\\&\mathcal{C}_{4} =\压裂{(q-1)\varrho^{q-1}(2\beta-\delta)\mathcal{M'}_{psi{1}}\Vert\mathcal{F}(F)_{1} \Vert}{(\beta-\delta)\varGamma(\beta+1)\varGamma(\sigma+1)}。\结束{对齐}$$

 □

可以采用相同的方法来获得关于广义Hyers–Ulam、Hyers–Ulam–Rassias和广义Hyers–Ulam–Rassias稳定性的结果。

5一个示例

为了支持我们的理论结果,这里给出了一个示例。

例5.1

对应于(1.1),我们考虑分数阶微分方程组第页-拉普拉斯算子\(φ{p})如下:

$$\开始{aligned}\textstyle\begin{cases}{}^{c} D类^{\sigma}(\phi_{p} D类^{\beta}u(t))+\frac{t}{\sqrt{1-t}}\frac{u^{2}(t)+1+{}^{c} D类^{\sigma}(\phi_{p} D类^{β}v(t))}{10e^{t^{2}}+1}=0,[0,1)=\mathrm{J},\\{}^{c} D类^{\sigma}(\phi_{p} D类^{\beta}v(t))+\frac{1}{\sqrt{4-4t^{2}}}^{c} D类^{\sigma}(\phi_{p} D类^{\beta}u(t))}{20+t^{3}}=0,\\([\phi_{p} D类^{\beta}u(0)])^{(j)}=0,\quad j=0,1,2,3,\dots,m-1,\\([\phi_{p} D类^{β}v(0)])^{(j)}=0,\\I^{k-\β}(u(0)。\结束{cases}\displaystyle\end{aligned}$$
(5.1)

设置

$$\psi_{1}\bigl(t,u(t),{}^{c} D类^{\sigma}\bigl(\phi_{p} D类^{\beta}v(t)\bigr)\biger)=\frac{u^{2}(t)+1+{}^{c} D类^{\sigma}(\phi_{p} D类^{\beta}u(t))}{10e^{t^{2}}}+1}$$

$$\psi_{2}\bigl(t,{}^{c} D类^{\sigma}\bigl(\phi_{p} D类^{\beta}u(t)\bigr),v(t)\ bigr^{c} D类^{\sigma}(\phi_{p} D类^{\beta}u(t))}{20+t^{3}}$$

现在,对于任何人\(u,v,\bar{u},\bar}\in\mathcal{X}\),我们有

$$\bigl\vert\psi{1}\bigl(t,u(t),v(t)\bigr)-\psi{1\bigl$$

$$\bigl\vert\psi_{2}\bigl(t,u(t),v(t)\bigr)-\psi_2}\bigle(t、\bar{u}(t)、\bar{v}(t)\biger)\vert\leq\frac{1}{20}\vert u-\bar{u}\vert+\frac{1}{20}\ vert v-\bar{v}\vert$$

在这里,\(\mathcal{米}_{\psi_{1}}=\数学{M'}_{\psi_{1}}=\压裂{1}{10e^{2}}),\(\mathcal{米}_{\psi{2}}=\mathcal{M'}{\psi.{2}{=\frac{1}{20}).接受\(q=\压裂{5}{2}\),\(β=3),\(\rho=\sigma=\frac{7}{2}\),\(δ=\压裂{3}{2}\),\(\varrho=1\),然后\(p=\压裂{5}{3}\)经过计算,我们得出\(增量=0.000192<1),所以系统(5.1)有一个独特的解决方案。此外,

$$\begin{aligned}\mathcal{H^{*}}=\begin{pmatrix}0.00002&0.00001 \\0.00001&0.00002\end{pmatricx}\end}对齐}$$

如果\(ω{1})\(ω{2})是特征值,那么\(ω{1}=0.00001)\(ω{2}=0.00003).由于光谱半径\(\mathcal{H^{*}}\)小于1,因此系统(5.1)Hyers–Ulam稳定。

6结论

本文利用Arzelä–Ascoli定理、Banach压缩原理和Schauder不动点定理,建立了非线性耦合隐式切换奇异分数阶微分系统解的存在唯一性准则(1.1). 此外,在一些特定的假设和条件下,我们已经证明了所述问题的解在Ulam意义上的稳定性结果。我们认为用于证明主要结果的方法是强大、有效的,并且适用于研究非线性分数阶微分方程解的不同定性性质。

工具书类

  1. Abdeljawad,T.,Alzabut,J.:关于Riemann–Liouville分数q个-差分方程及其在延迟logistic型模型中的应用。数学。方法应用。科学。41, 8953–8962 (2018)

    第条 数学科学网 数学 谷歌学者 

  2. Agarwal,R.P.,Baleanu,D.,Hedayati,V.,Rezapour,S.:通过积分边界条件的两个分数阶导数包含问题。申请。数学。计算。257, 205–212 (2015)

    数学科学网 数学 谷歌学者 

  3. Agarwal,R.P.,Zhou,Y.,He,Y.:分数阶中立型泛函微分方程的存在性。计算。数学。申请。59(3), 1095–1100 (2010)

    第条 数学科学网 数学 谷歌学者 

  4. Ahmad,N.,Ali,Z.,Shah,K.,Zada,A.,Rahman,G.:脉冲分数阶微分方程隐式非线性动力学问题的分析。复杂性2018,文章ID 6423974,01–15(2018)

    数学 谷歌学者 

  5. Ahmad,N.、Rafiq,M.、Baleanu,D.、Rehman,M.A.:自催化布鲁塞尔模型的时空数值模拟。罗马·J·物理学。64,1-14(2019)

    谷歌学者 

  6. Ali,M.,Alquran,M..,Jaradat,I.,Baleanu,D.:新开发的五阶Korteweg–de Vries方程的驻波解。高级差异。埃克。2019, 263 (2019)

    第条 数学科学网 数学 谷歌学者 

  7. Ali,Z.,Zada,A.,Shah,K.:关于非线性隐式分数阶微分方程耦合系统的Ulam稳定性。牛市。马来人。数学。科学。Soc公司。42(5) ,2681–2699(2018)

    第条 数学科学网 数学 谷歌学者 

  8. Alkhazzan,A.、Jiang,P.、Baleanu,D.、Khan,H.和Khan,A.:一类具有奇异性的非线性分数阶微分方程的稳定性和存在性结果。数学。方法应用。科学。41(18), 9321–9334 (2018)

    第条 数学科学网 数学 谷歌学者 

  9. Alzabut,J.,Abdeljawad,T.:非线性时滞分数差分方程及其在离散分数Lotka–Volterra竞争模型上的应用。J.计算。分析。申请。25(5), 889–989 (2018)

    数学科学网 谷歌学者 

  10. Aydogan,M.S.,Baleanu,D.,Mousalou,A.,Rezapour,S.:关于两个高阶Caputo–Fabrizio分数阶积分微分方程的近似解。高级差异。埃克。2017, 221 (2017)

    第条 数学科学网 数学 谷歌学者 

  11. Aydogan,M.S.,Baleanu,D.,Mousalou,A.,Rezapour,S.:关于高阶分数阶积分微分方程,包括Caputo–Fabrizio导数。已绑定。价值问题。2018, 90 (2018)

    第条 数学科学网 数学 谷歌学者 

  12. Baghani,H.:涉及两个分数阶的分数阶Langevin方程解的存在性和唯一性。J.不动点理论应用。20, 63 (2018)

    第条 数学科学网 数学 谷歌学者 

  13. Baleanu,D.,Ghafarnezhad,K.,Rezapour,S.:关于三步危机积分微分方程。高级差异。埃克。2019, 153 (2019)

    第条 数学科学网 数学 谷歌学者 

  14. Baleanu,D.,Mousalou,A.,Rezapour,S.:关于一些无穷系数对称Caputo–Fabrizio分数阶积分微分方程解的存在性。高级差异。埃克。2017, 145 (2017)

    第条 数学科学网 数学 谷歌学者 

  15. Baleanu,D.,Mousalou,A.,Rezapour,S.:研究涉及Caputo–Fabrizio导数的分数阶积分微分方程近似解的新方法。高级差异。埃克。2017, 51 (2017)

    第条 数学科学网 数学 谷歌学者 

  16. Baleanu,D.,Mousalou,A.,Rezapour,S.:阶的扩展分数Caputo-Fabrizio导数\(0<\sigma\leq 1)\(C_{R}[0,1]\)以及两个高阶级数型微分方程解的存在性。高级差异。埃克。2018,255(2018)

    第条 数学科学网 数学 谷歌学者 

  17. Baleanu,D.,Rezapour,S.,Mohammadi,H.:非线性分数阶微分方程的一些存在性结果。菲洛斯。事务处理。R.Soc.伦敦。A类371, 1–7 (2013)

    第条 数学科学网 数学 谷歌学者 

  18. Burton,T.,Furumochi,T.:Krasnoselskii的不动点定理和稳定性。非线性分析。49(4), 445–454 (2002)

    第条 数学科学网 数学 谷歌学者 

  19. Hyers,H.D.:关于线性函数方程的稳定性。程序。国家。阿卡德。科学。27, 222–224 (1941)

    第条 数学科学网 数学 谷歌学者 

  20. Khan,A.,Syam,M.I.,Zada,A.:具有Caputo和Riemann–Liouville导数的非线性分数阶微分方程的稳定性分析。欧洲物理学。J.Plus公司133, 264 (2018)

    第条 谷歌学者 

  21. Khan,R.A.,Shah,K.:分数阶多点边值问题解的存在性和唯一性。Commun公司。申请。分析。19, 515–526 (2015)

    谷歌学者 

  22. Kilbas,A.A.,Srivastava,H.M.,Trujillo,J.J.:分数微分方程的理论与应用,《北荷兰德数学研究》,第204卷,第540页。Elsevier,阿姆斯特丹(2006)

     数学 谷歌学者 

  23. Kojabad,E.A.,Rezapour,S.:使用Chebyshev和Legendre多项式求和型分数阶积分微分方程的近似解。高级差异。埃克。2017, 351 (2017)

    第条 数学科学网 数学 谷歌学者 

  24. Lakshmikantham,V.,Leela,S.,Vasundhara,J.D.:分数动态系统理论。剑桥学术出版社,剑桥(2009)

    数学 谷歌学者 

  25. Li,Y.:带积分边界条件的分数阶微分方程正解的存在性第页-拉普拉斯算子。高级差异。埃克。2017, 135 (2017)

    第条 数学科学网 数学 谷歌学者 

  26. Liu,Y.,Chen,S.,Ou,L.:多阶分数阶微分方程Sturm–Liouville边值问题的可解性。阿拉伯数学杂志。科学。22, 207–231 (2016)

    数学科学网 数学 谷歌学者 

  27. Liu,Z.,Lu,L.,Szántó,I.:分数阶脉冲微分方程解的存在性第页-拉普拉斯算子。数学学报。挂。141(3), 203–219 (2013)

    第条 数学科学网 数学 谷歌学者 

  28. Magin,R.L.:《生物工程中的分数微积分》,《生物医学评论》。工程师。32(1), 1–104 (2004)

    第条 谷歌学者 

  29. Obloza,M.:线性微分方程的Hyers稳定性。罗奇尼克·诺克-Dydakt公司。Prace Mat公司。13, 259–270 (1993)

    数学科学网 数学 谷歌学者 

  30. Oldham,K.B.:电化学中的分数微分方程。高级工程师软件。41(1), 9–12 (2010)

    第条 数学 谷歌学者 

  31. 帕莱斯,R.S.:巴拿赫收缩原理的简单证明。J.不动点理论应用。2, 221–223 (2007)

    第条 数学科学网 数学 谷歌学者 

  32. Podlubny,I.:分数微分方程。圣地亚哥学术出版社(1999)

    数学 谷歌学者 

  33. Rassias,T.M.:关于Banach空间中线性映射的稳定性。程序。美国数学。Soc公司。72,297–300(1978年)

    第条 数学科学网 数学 谷歌学者 

  34. Rizwan,R.,Zada,A.:具有混合导数的非线性脉冲Langevin方程。数学。方法应用。科学。(2019).https://doi.org/10.1002/mma.5902

    第条 数学 谷歌学者 

  35. Rizwan,R.,Zada,A.,Wang,X.:具有非瞬时脉冲的非线性隐式分数阶Langevin方程的稳定性分析。高级差异。埃克。2019,85(2019)

    第条 数学 谷歌学者 

  36. 罗伊登,H.I.:真实分析。纽约麦克米伦(1983)

    数学 谷歌学者 

  37. Sabatier,J.,Agrawal,O.P.,Machado,J.A.T.:分数微积分的进展,物理和工程的理论发展和应用。施普林格,多德雷赫特(2007)

    数学 谷歌学者 

  38. Shah,S.O.,Zada,A.,Hamza,A.E.:时间尺度上一阶非线性脉冲时变时滞动力系统的稳定性分析。资格。理论动力学。系统。(2019).https://doi.org/10.1007/s12346-019-00315-x

    第条 谷歌学者 

  39. Smart,D.R.:不动点定理。剑桥大学出版社,剑桥(1980)

    数学 谷歌学者 

  40. Urs,C.:耦合不动点定理及其在周期边值问题中的应用。Miskolc数学。笔记14, 323–333 (2013)

    第条 数学科学网 数学 谷歌学者 

  41. Veeresha,P.,Prakasha,D.G.,Baleanu,D.:非线性分数阶Kolmogorov–Petrovskii–Piskunov方程的有效数值技术。数学7(3) ,1-17(2019)

    第条 谷歌学者 

  42. Wang,J.,Lv,L.,Zhou,Y.:带Caputo导数的分数阶微分方程的Ulam稳定性和数据相关性。电子。J.质量。理论不同。埃克。63, 1 (2011)

    数学科学网 数学 谷歌学者 

  43. Wang,J.,Shah,K.,Ali,A.:分数阶非线性脉冲切换耦合演化方程的存在性和Hyers–Ulam稳定性。数学。方法应用。科学。41, 1–11 (2018)

    第条 数学科学网 数学 谷歌学者 

  44. Wang,J.,Zada,A.,Ali,W.:拟Banach空间中一阶变时滞脉冲微分方程的Ulam型稳定性。国际非线性科学杂志。数字。模拟。19(5), 553–560 (2018)

    第条 数学科学网 数学 谷歌学者 

  45. Wang,J.,Zada,A.,Waheed,H.:非线性隐式分数阶反周期边值问题耦合系统的稳定性分析。数学。方法应用。科学。(2019).https://doi.org/10.1002/mma.5773

    第条 谷歌学者 

  46. Wu,G.C.,Abdeljawad,T.,Liu,J.,Baleanu,D.,Wu,K.T.:通过不动点技术对分数阶离散时间神经网络进行Mittag-Lefler稳定性分析。非线性分析。,模型。控制24(2019)

  47. Zada,A.,Ali,S.:非瞬时脉冲序列分数阶微分方程多点边值问题的稳定性分析。国际非线性科学杂志。数字。模拟。19(7), 763–774 (2018)

    第条 数学科学网 数学 谷歌学者 

  48. Zada,A.,Ali,W.,Park,C.:通过Grönwall–Bellman–Bihari型积分不等式,高阶非线性时滞微分方程的Ulam型稳定性。申请。数学。计算。350, 60–65 (2019)

    数学科学网 谷歌学者 

  49. Zada,A.,Mashal,A.:拟巴拿赫空间中n阶非线性脉冲微分方程的稳定性分析。数字。功能。分析。最佳方案。(2019).https://doi.org/10.1080/01630563.2019.1628049

    第条 谷歌学者 

  50. Zada,A.,Shaleena,S.,Li,T.:中高阶非线性微分方程的稳定性分析β-赋范空间。数学。方法应用。科学。42(4), 1151–1166 (2019)

    第条 数学科学网 数学 谷歌学者 

下载参考资料

数据和材料的可用性

不适用。

基金

第三位作者感谢苏丹王子大学通过研究小组应用数学非线性分析方法(NAMAM)资助这项工作,小组编号RG-DES-2017-01-17。

作者信息

作者和附属机构

作者

贡献

所有作者对这篇论文的贡献都是平等和重要的。所有作者都已阅读并批准了手稿的最终版本。

通讯作者

与的通信杰哈德·阿尔扎布特

道德声明

竞争性利益

作者声明,他们没有相互竞争的利益。

其他信息

出版商备注

Springer Nature在公布的地图和机构关联中的管辖权主张方面保持中立。

权利和权限

开放式访问本文根据Creative Commons Attribution 4.0 International License的条款分发(http://creativecommons.org/licenses/by/4.0/),它允许在任何媒体上不受限制地使用、分发和复制,前提是您对原始作者和来源给予适当的信任,提供知识共享许可的链接,并指明是否进行了更改。

转载和许可

关于本文

检查更新。通过CrossMark验证货币和真实性

引用这篇文章

Ahmad,M.,Zada,A.和Alzabut,J.非线性耦合隐式切换奇异分数阶微分系统的稳定性分析第页-拉普拉斯人。高级差异Equ 2019, 436 (2019). https://doi.org/10.1186/s13662-019-2367-y

下载引文

  • 收到以下为:

  • 认可的以下为:

  • 已发布以下为:

  • 内政部以下为:https://doi.org/10.1186/s13662-019-2367-y

移动交换中心

关键词