$N_chi(\alpha,T)$上的估计如何导致算术序列的Dirichlet素数定理数学溢出 来自mathoflorow.net的最新30条 2024-05-24时间1:21:20Z https://mathoflorow.net/feeds/question/227035(网址:https://mathoflorow.net/feeds/question/227035) https://creativecommons.org/licenses/by-sa/4.0/rdf https://mathoverflow.net/q/227035 1 $N_chi(\alpha,T)$上的估计如何导致算术序列的Dirichlet素数定理? 约翰·曼古尔 https://mathoverflow.net/users/1358 2015年12月26日T17:33:31Z 2016年1月10日16:05:41Z <p>设$N_chi(\alpha,T)$是$L(s=\sigma+it,\chi)=\sum\frac{\chi(N)}{N^s}$的零个数,其中$c&gt;0$和$(\sigma,t)$位于矩形$[\alpha,1]\times[-t,t]$中</p>(第页)<p>在各种论文中,人们可以阅读所有L函数的零点数估计:</p><p>$$\sum_{\chi\mod q}N_chi(\alpha,T)\ll T^{c(1-\alpha)}$$</p><p>这如何暗示算术级数的素数定理</p>(第页)<p>$$\sum_{1\leq\leqQ}\sum_{chi}\left|\sum_x^{x+h}\chi(p)\log p\right|\ll h\cdot e^{large-a\frac{\log x}{\log-q}}$$</p><p>我几乎认不出这是一句话<strong>任何算术序列中都有无穷多个素数</strong></p><p>由于这是一个关于所有字符$\chi$的语句,我们如何得到一个算术序列$n=aq+b$</p>(第页)<小时><p>我是一个不专业的人,我怀疑这样的结果对该领域以外的人来说并不是100%清楚的</p>(第页)<p>精神上类似,Polya-Vinogradov不等式是否意味着算术序列的PNT?这可能是一个单独的问题</p>(第页) https://mathoverflow.net/questions/227035/-/227046#227046 7 lkjasd对$N_chi(\alpha,T)$上的估计如何导致算术序列的Dirichlet素数定理的回答? 勒克哈德 https://mathoverflow.net/users/84572 2015年12月26日20:17:10Z 2015年12月26日20:17:10Z <p>由于声誉不佳,我无法发表评论,但以下是三点评论:</p><ul><li>Polya-Vinogradov并不意味着PNT或算术级数中的PNT</li><li>你所说的PNT是Bombieri-Vinogradov的变体。这是“高模算术级数的平均PNT”。顺便说一句,你所引用的界限是错误的,因为总和中最多有平方抵消</li><li>最后,零密度定理确实暗示了Bombieri-Vinogradov,尽管这是一种老式的方法。更现代的方法是通过大筛子和Siegel-Walfisz。注意,零密度定理源自大筛子。例如,你可以查看Bombieri的原始论文,了解其含义</li></ul> https://mathoverflow.net/questions/227035/-/227057#227057 4 来自MO的GH对$N_chi(\alpha,T)$上的估计如何导致算术序列的Dirichlet素数定理的回答? 来自MO的GH https://mathoverflow.net/users/11919 2015年12月26日T23:33:18Z 2015年12月26日T23:40:52Z <p>首先,你所引用的零密度估计值在右边应该有$q$依赖性(因为没有它是错误的)。对于算术级数,校正后的估计比PNT意味着更多,即:</p><ol><li>用于算术级数和短区间的PNT版本</li><li>算术级数中第一个素数的良好上界</li></ol><p>这个主题在Iwaniec-Kowalski:解析数论中得到了很好的讨论,特别是见第10章和第18章。另一个有用的来源是赫胥黎:素数的分布</p>(第页)<p>大致来说,算术级数和区间中的素数可以用素数上的字符和来表示(如Dirichlet发现的),而素数又可以通过Mellin变换表示为Dirichlet$L$-函数(如Riemann发现的)的零点上的和。零密度估计在一定程度上确定了零的位置,因此可以对所讨论的素数进行相当精确的评估</p>(第页)<p>关于第二个问题,我不知道用pólya-Vinogradov不等式计算算术级数中的素数的方法</p>(第页) https://mathoverflow.net/questions/227035/-/227099#227099 22 Terry Tao对$N_chi(\alpha,T)$上的估计如何导致算术序列的Dirichlet素数定理的回答? 陶哲轩 https://mathoverflow.net/users/766 2015年12月27日T18:06:49 Z 2016年1月10日16:05:41Z <p>首先,一般性评论:随着对数学问题的理解加深,一个给定问题(或一类问题)的数学上最自然的形式通常(甚至可以预期)会变得“难以识别”,因为这是历史驱动的问题在这一领域发挥作用的形式。例如,经典的希腊问题——用直尺和指南针将角度三等分或将立方体加倍——变成了伽罗瓦场扩展理论的一部分,然而,用直尺和指南针将圆平方的表面上类似的古希腊问题,现在却成为了超越理论的一部分。这些领域已经发生了进一步的转变,例如在现代代数几何中,人们可以将伽罗瓦理论视为图式理论(及其基本群)的特例。这些转变之所以出现,是因为人们为解决这些问题而慢慢获得的数学工具和见解往往是使用形式主义自然抽象出来的,而形式主义通常与问题的历史动机没有直接联系,除此之外,历史问题恰好可以转化为形式主义能够处理的更广泛(最终往往更有趣)的一类问题的特殊情况</p>(第页)<p>现在谈谈手头的具体问题。第一个洞见是现代分析数论的基础,它是历史数论问题,例如“我如何证明$X$形式有无穷多个素数?”应被视为更一般问题的特例“我如何获得$\sum_p f(p)形式和的良好渐近性或界$,$p$在素数上的范围在哪里?“.原始问题可以被视为特殊情况,其中$f(p)$是与属性$X$相关联的指示符函数$1_X$;然而,后一个问题是在一个更通用、更灵活、更强大的框架中出现的,因为我们必须使用所有的工具来比较一个和另一个和。例如,与其进行简单的未加权计数$\sum_p1_X(p)$,还不如使用更一般的加权和,例如$\sum_p\frac{1_X。在Dirichlet关于算术级数的定理的例子中,Dirichllet自己的一个关键见解是乘法傅里叶展开</p><p>$$1_{a\hbox{mod}q}(n)=\frac{1}{\phi(q)}\sum_\chi\overline{\chi(a)}\chi(n)$$</p><p>允许人们将素数的原始问题转换为算术级数$a\hbox{mod}q$,最终变成一个更有趣的问题,即素数上Dirichlet字符和的估计,例如$\sum{x\leqp\leqx+h}\chi(p)\logp$。基本上,非主Dirichlet字符的这些和的上界越大,就越容易控制历史上有趣的统计数据,例如以主字符$\chi_0(n):=1_{(n,q)=1}$表示的$\sum_{x\leqp\leqx+h:p=a\hbox{mod}q}1$,这相对容易处理</p>(第页)<p>相比算术级数,人们更喜欢使用字符的主要原因是前者的乘法结构比后者好得多,从而可以充分发挥乘法数论的威力。事实上,Dirichlet的下一个伟大见解是,素数上的特征和和乘积通过Euler乘积公式等恒等式与相关的Dirichlet$L$-函数紧密相连</p><p>$$L(s,\chi)=\prod_p(1-\frac{\chi(p)}{p^s})^{-1}$$</p><p>(编码算术基本定理和Dirichlet字符$\chi$的乘法性质)或此公式的对数导数</p><p>$$-\frac{L'(s,\chi)}{L(s,\ chi){=\sum_{j=1}^\infty\sum_p\frac{\chi(p)^j}{p^{sj}}\log p$$</p><p>在后一个公式中,人们已经开始明白为什么用字符和对数权重$\log p$来衡量素数实际上是很自然的。(实际上,打包所有这些信息的最方便的方法是将素数的和替换为自然数的和,这些自然数由<a href=“https://en.wikipedia.org/wiki/Von_Mangoldt_function(维基百科网)“>von Mangoldt函数。)</p><p>通过残数定理等复杂的分析工具,我们知道亚纯函数$-\frac{L'(s,\chi)}{L(s,\ chi){$的行为是由Dirichlet$L$-函数$L(s、\chi)$的零点的位置控制的。综上所述,我们现在看到,要理解算术级数中的素数,需要解决的关键问题是$L(s,\chi)$的零在哪里。例如,Dirichlet对其定理的原始证明最终将问题简化为表明$s=1$不是该函数的零。通过各种“显式公式”,可以使这种联系更加明显,例如,Dirichlet L函数的von Mangoldt显式公式基本上如下所示</p><p>$$\sum_{p\leq X}\chi(p)\log p+\dotes=-\sum_\rho\frac{X^\rho}{\rho{+\dots$$</p><p>其中$\rho$的范围超过$L(s,\chi)$的零,而$\dots$隐藏了一些低阶项,为了简单起见,我将在这里省略这些项(以及如何解释RHS上的无穷和,或者是否应将其截断为有限和的问题)。将这些公式与前面提到的乘法傅里叶展开相结合,可以在算术级数中的素数和$L$-函数的零点之间提供一些有用的直接联系。(这种联系有时被普遍称为“素数的音乐”,尤其是在$q=1$的情况下。实际上,通过适当的“专业”思维,$q=1$case和$q&gt;1$case可以统一成一种更自然、更抽象的形式主义,但这可能是另一个时代的故事。)</p><p>显式公式揭示的一件事是,大实数部分$\rho$的零$\operatorname{Re}(s)&gt;\alpha$将对素数的分布产生巨大影响。理想情况下,为了最大限度地利用显式公式,我们希望临界线$\operatorname{Re}(s)=\frac{1}{2}$(这是Dirichlet L函数的所有已知零所在的位置)的右边没有任何零,这就是为什么广义黎曼假设(GRH)是如此有价值的目标的主要原因。当然,我们不能证明GRH,但在某些应用中,我们可以使用较弱的密度定理来解决这个问题,这些密度定理并不完全禁止零出现在临界线的右侧,但至少限制了它们中有多少个可以这样做,这仍然可以导致在使用显式公式时出现的各种误差项的合理上限。事实证明,越接近$\operatorname{Re}(s)=1$行,就越容易排除零,事实上,我们知道这行上或右边没有零。对于$\alpha&lt;1$,到目前为止,我们还无法防止无限条$\{s:\operatorname{Re}(s)&gt;中存在无穷多个零;\alpha\}$,但我们至少能够获得矩形中零的非平凡边界,例如$\{s:\operatorname{Re}&gt;\α;0\leq\operatorname{Im}(s)&lt;这一点,再加上适当截断的显式公式,证明(经过一些计算)足以控制各种算术级数中的素数,正如你引用的加拉赫(Gallagher)的论文中所做的那样</p>(第页)<p>我们可以从达文波特的乘法数论书开始介绍这一切,特别是证明带有经典误差项的算术级数中的素数定理,它使用了与Gallagher论文中相同的一般策略,但更容易执行(Dirichlet L函数只需要经典的零自由区,而不是Gallagher使用的更困难的零密度估计)。正如GH的回答中所提到的,伊瓦尼埃克·科瓦尔斯基对这些主题进行了更现代、更高级的处理。我也喜欢蒙哥马利的CBMS书</p>(第页)<p>至于Polya-Vinogradov估计,它在限定字符和方面肯定有一定的相关性,而这些字符和又可用于控制L函数,但它通常不是用于此目的的最方便的工具(例如,不等式的原始公式与急剧截断的字符和有关,而平滑的字符和通常更适合用于理解L函数)。尽管如此,还是有着密切的亲缘关系。例如,用于证明Polya-Vinogradov的傅里叶反演与Dirichlet L函数的函数方程的泊松公式证明密切相关</p>(第页)